Recognition problem, Theory of Computation

Assignment Help:

The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cation of the language. Again, we'll assume we are given a DFA as a ?ve-tuple.

Theorem 3 (Recognition) The Recognition Problem for Regular Languages is decidable.


Related Discussions:- Recognition problem

Algorithm for the universal recognition problem, Sketch an algorithm for th...

Sketch an algorithm for the universal recognition problem for SL 2 . This takes an automaton and a string and returns TRUE if the string is accepted by the automaton, FALSE otherwi

Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

Decidability, examples of decidable problems

examples of decidable problems

Strictly 2-local languages, The fundamental idea of strictly local language...

The fundamental idea of strictly local languages is that they are speci?ed solely in terms of the blocks of consecutive symbols that occur in a word. We'll start by considering lan

Prism algorithm, what exactly is this and how is it implemented and how to ...

what exactly is this and how is it implemented and how to prove its correctness, completeness...

Two-tape turing machine, Let there L1 and L2 . We show that L1 ∩ L2 is CFG ...

Let there L1 and L2 . We show that L1 ∩ L2 is CFG . Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the second

Automata answer, build a TM that enumerate even set of even length string o...

build a TM that enumerate even set of even length string over a

Agents architecture, Describe the architecture of interface agency

Describe the architecture of interface agency

Applying the pumping lemma, Applying the pumping lemma is not fundamentally...

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd