Recognition problem, Theory of Computation

Assignment Help:

The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cation of the language. Again, we'll assume we are given a DFA as a ?ve-tuple.

Theorem 3 (Recognition) The Recognition Problem for Regular Languages is decidable.


Related Discussions:- Recognition problem

NP complete, I want a proof for any NP complete problem

I want a proof for any NP complete problem

Pendulum Swings, how many pendulum swings will it take to walk across the c...

how many pendulum swings will it take to walk across the classroom?

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Toc, how to understand DFA ?

how to understand DFA ?

Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

Turing machine, Design a turing machine to compute x + y (x,y > 0) with x a...

Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

#turing machine, #can you solve a problem of palindrome using turing machin...

#can you solve a problem of palindrome using turing machine with explanation and diagrams?

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Finiteness of languages is decidable, To see this, note that if there are a...

To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the

Finiteness problem for regular languages, The fact that the Recognition Pro...

The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd