Rational expressions, Mathematics

Assignment Help:

Now we have to look at rational expressions. A rational expression is a fraction wherein the numerator and/or the denominator are polynomials.  Here are some examples of rational expressions.

     6 /x -1          z 2  -1 /z 2 + 5      m4 + 18m + 1/ m2 - m - 6            4 x2 + 6 x -10/1

The last one might look a little strange as it is more commonly written 4 x2 + 6 x -10 . But, it's significant to note that polynomials may be thought of as rational expressions if we have to, although they hardly ever are.

There is an unspoken rule while dealing along with rational expressions which now we need to address. While dealing with numbers we know that division with zero is not allowed. Well the similar is true for rational expressions.  Thus, when dealing with rational expressions we will always suppose that whatever x is it won't give division by zero. Rarely do we write this limitation down, however we will always need to keep them in mind.

For the first one listed we have to ignore x = 1 .  The second rational expression is never being zero in the denominator and thus we don't have to worry regarding any restrictions.  Note down that the numerator of the second rational expression will be zero.  That is okay, we only need to ignore division by zero.  For the third rational expression we will have to avoid m = 3 and m =-2 .

The final rational expression shown above will never be zero in the denominator thus again we don't require having any restrictions.

The first topic which we have to discuss here is decreasing a rational expression to lowest terms. A rational expression has been decreased to lowest terms if all common factors from the numerator & denominator have been canceled out.  Already we know how to do this with number fractions so let's take a rapid look at an example. not reduced to lowest terms

                                               ⇒       1344_Rational Expressions.png    ⇐    reduced to lowest terms

 

 

 

 

With rational expression it works accurately the similar way.

not reduced to lowest terms ⇒ 496_Rational Expressions1.png

 

  1217_Rational Expressions2.png                               ⇐ reduced to lowest terms

However, we do need to be careful with canceling. There are little common mistakes that students frequently make with these problems.  Remind that to cancel a factor it has to multiply the whole numerator and the whole denominator.  Thus, the x+3 above could cancel as it multiplied the whole numerator & the whole denominator.  Though, the x's in the decreased form can't cancel as the x in the numerator is not times the whole numerator.

To see why the x's don't cancel out in the reduced form above put a number in & see what takes place. Let's plug in x=4.

Obviously the two aren't the similar number!

Thus, be careful with canceling out.  Since a general rule of thumb remember that you can't cancel out something if it's got a "+" or a "-" on one side of it. There is one exception of this rule "-" that we'll deal along with in an example later on down the road.


Related Discussions:- Rational expressions

Utilizes the definition of the limit to prove the given limi, Utilizes the ...

Utilizes the definition of the limit to prove the given limit. Solution In this case both L & a are zero.  So, let ε 0 so that the following will be true. |x 2 - 0|

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Judgment sampling, Judgment Sampling Here the interviewer chooses whom ...

Judgment Sampling Here the interviewer chooses whom to interview believing that their view is more fundamental because they might be directly affected for illustration, to find

Add or subtract operations for complex numbers, performs the mentioned oper...

performs the mentioned operation and write the answers in standard form. ( -4 + 7 i ) + (5 -10 i ) Solution Actually there isn't much to do here other than add or subt

Horizontal asymptotes, Horizontal asymptotes : Such as we can have vert...

Horizontal asymptotes : Such as we can have vertical asymptotes defined in terms of limits we can also have horizontal asymptotes explained in terms of limits. Definition

Linear programming, I want to send to you a file for my question.How. Could...

I want to send to you a file for my question.How. Could you please send my a link for that.

.., the circumference of a circle C of radius r is given by C=2pR.taking p ...

the circumference of a circle C of radius r is given by C=2pR.taking p to be 22/7 a)find the circumference when the radius is 28 cm b)find the radius when the circumference is 484

Given the hypotenuse of a right triangle, Given the hypotenuse of a right t...

Given the hypotenuse of a right triangle: Given that the hypotenuse of a right triangle is 18" and the length of one side is 11", what is the length of another side? a 2 +

How to find total no. of unordered pairs , How to find total no. of unorder...

How to find total no. of unordered pairs of disjoint subsets of a finite set? Solution) Suppose A and B are two such disjoint subsets of the set S. Then every element can go into

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd