Rational expressions, Mathematics

Assignment Help:

Now we have to look at rational expressions. A rational expression is a fraction wherein the numerator and/or the denominator are polynomials.  Here are some examples of rational expressions.

     6 /x -1          z 2  -1 /z 2 + 5      m4 + 18m + 1/ m2 - m - 6            4 x2 + 6 x -10/1

The last one might look a little strange as it is more commonly written 4 x2 + 6 x -10 . But, it's significant to note that polynomials may be thought of as rational expressions if we have to, although they hardly ever are.

There is an unspoken rule while dealing along with rational expressions which now we need to address. While dealing with numbers we know that division with zero is not allowed. Well the similar is true for rational expressions.  Thus, when dealing with rational expressions we will always suppose that whatever x is it won't give division by zero. Rarely do we write this limitation down, however we will always need to keep them in mind.

For the first one listed we have to ignore x = 1 .  The second rational expression is never being zero in the denominator and thus we don't have to worry regarding any restrictions.  Note down that the numerator of the second rational expression will be zero.  That is okay, we only need to ignore division by zero.  For the third rational expression we will have to avoid m = 3 and m =-2 .

The final rational expression shown above will never be zero in the denominator thus again we don't require having any restrictions.

The first topic which we have to discuss here is decreasing a rational expression to lowest terms. A rational expression has been decreased to lowest terms if all common factors from the numerator & denominator have been canceled out.  Already we know how to do this with number fractions so let's take a rapid look at an example. not reduced to lowest terms

                                               ⇒       1344_Rational Expressions.png    ⇐    reduced to lowest terms

 

 

 

 

With rational expression it works accurately the similar way.

not reduced to lowest terms ⇒ 496_Rational Expressions1.png

 

  1217_Rational Expressions2.png                               ⇐ reduced to lowest terms

However, we do need to be careful with canceling. There are little common mistakes that students frequently make with these problems.  Remind that to cancel a factor it has to multiply the whole numerator and the whole denominator.  Thus, the x+3 above could cancel as it multiplied the whole numerator & the whole denominator.  Though, the x's in the decreased form can't cancel as the x in the numerator is not times the whole numerator.

To see why the x's don't cancel out in the reduced form above put a number in & see what takes place. Let's plug in x=4.

Obviously the two aren't the similar number!

Thus, be careful with canceling out.  Since a general rule of thumb remember that you can't cancel out something if it's got a "+" or a "-" on one side of it. There is one exception of this rule "-" that we'll deal along with in an example later on down the road.


Related Discussions:- Rational expressions

Definition and theorem of derivation, Definition : A function f ( x ) is c...

Definition : A function f ( x ) is called differentiable at x = a if f ′ ( x ) exists & f ( x ) is called differentiable onto an interval if the derivative present for each of the

Mrs, Distributive Property _x7=(3x7)+(2x_)

Distributive Property _x7=(3x7)+(2x_)

Pair of straight lines, the adjacent sides of a parallelogram are 2x2-5xy+3...

the adjacent sides of a parallelogram are 2x2-5xy+3y2=0 and one diagonal is x+y+2=0 find the vertices and the other diagonal

How to find x?, How can I solve x in a circle? For example.. m

How can I solve x in a circle? For example.. m

Trignometry, prove that cos(a)/1-sin(a)=tan(45+A/2)

prove that cos(a)/1-sin(a)=tan(45+A/2)

Polar coordinates, THE CURVE C HAS POLAR EQUATION R=[X^1/2][E^X^2/PI]. WHER...

THE CURVE C HAS POLAR EQUATION R=[X^1/2][E^X^2/PI]. WHERE X IS GREATER THAN OR EQUAL TO 0 BUT LESS THAN OR EQUAL TO PI. THE AREA OF THE FINITE REGION BOUNDED BY C AND THE LINE X EQ

Estimates the probabilities of price changes, Mr. Hoper is in charge of inv...

Mr. Hoper is in charge of investments for the golden horizon company. He estimates from past price fluctuations in the gold market that the probabilities of price changes on a give

Geometry, how to do proving of rectilinear figures?..

how to do proving of rectilinear figures?..

Determine the laplace transform of the probability , 1. Let , where  ar...

1. Let , where  are independent identically distributed random variables according to an exponential distribution with parameter μ. N is a Binomially distribut

Rebecca is 12.5% taller than debbie how tall is rebecca, Rebecca is 12.5% t...

Rebecca is 12.5% taller than Debbie. Debbie is 64 inches tall. How tall is Rebecca? Because Rebecca is 12.5% taller than Debbie, she is 112.5% of Debbie's height (100% + 12.5%

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd