Rational expressions, Mathematics

Assignment Help:

Now we have to look at rational expressions. A rational expression is a fraction wherein the numerator and/or the denominator are polynomials.  Here are some examples of rational expressions.

     6 /x -1          z 2  -1 /z 2 + 5      m4 + 18m + 1/ m2 - m - 6            4 x2 + 6 x -10/1

The last one might look a little strange as it is more commonly written 4 x2 + 6 x -10 . But, it's significant to note that polynomials may be thought of as rational expressions if we have to, although they hardly ever are.

There is an unspoken rule while dealing along with rational expressions which now we need to address. While dealing with numbers we know that division with zero is not allowed. Well the similar is true for rational expressions.  Thus, when dealing with rational expressions we will always suppose that whatever x is it won't give division by zero. Rarely do we write this limitation down, however we will always need to keep them in mind.

For the first one listed we have to ignore x = 1 .  The second rational expression is never being zero in the denominator and thus we don't have to worry regarding any restrictions.  Note down that the numerator of the second rational expression will be zero.  That is okay, we only need to ignore division by zero.  For the third rational expression we will have to avoid m = 3 and m =-2 .

The final rational expression shown above will never be zero in the denominator thus again we don't require having any restrictions.

The first topic which we have to discuss here is decreasing a rational expression to lowest terms. A rational expression has been decreased to lowest terms if all common factors from the numerator & denominator have been canceled out.  Already we know how to do this with number fractions so let's take a rapid look at an example. not reduced to lowest terms

                                               ⇒       1344_Rational Expressions.png    ⇐    reduced to lowest terms

 

 

 

 

With rational expression it works accurately the similar way.

not reduced to lowest terms ⇒ 496_Rational Expressions1.png

 

  1217_Rational Expressions2.png                               ⇐ reduced to lowest terms

However, we do need to be careful with canceling. There are little common mistakes that students frequently make with these problems.  Remind that to cancel a factor it has to multiply the whole numerator and the whole denominator.  Thus, the x+3 above could cancel as it multiplied the whole numerator & the whole denominator.  Though, the x's in the decreased form can't cancel as the x in the numerator is not times the whole numerator.

To see why the x's don't cancel out in the reduced form above put a number in & see what takes place. Let's plug in x=4.

Obviously the two aren't the similar number!

Thus, be careful with canceling out.  Since a general rule of thumb remember that you can't cancel out something if it's got a "+" or a "-" on one side of it. There is one exception of this rule "-" that we'll deal along with in an example later on down the road.


Related Discussions:- Rational expressions

Basic, is 1/6 same as six times less

is 1/6 same as six times less

Example of rounding off, Example of Rounding Off: Example: Round ...

Example of Rounding Off: Example: Round off the subsequent number to two decimal places. 6.238 Solution: Step 1:             8 is the number to the right of t

If there are 75 students in the play how many are boys, 64% of the students...

64% of the students within the school play are boys. If there are 75 students in the play, how many are boys? To ?nd out 64% of 75, multiply 75 by the decimal equivalent of 64%

Math, the size of my sitting room is 7metres by 6metres . i bought a rug fo...

the size of my sitting room is 7metres by 6metres . i bought a rug for covering the centre of its floor. one metre of the floor around the edge of the room is not to be covered by

Show that 571 is a prime number, Show that 571 is a prime number. Ans: ...

Show that 571 is a prime number. Ans:    Let x=571⇒√x=√571 Now 571 lies between the perfect squares of  (23)2 and (24)2 Prime numbers less than 24 are 2,3,5,7,11,13,17,1

Demand Forecast, How should shoppers Stop develop its demand forecasts?

How should shoppers Stop develop its demand forecasts?

Geometric mean-geometric progression, Geometric mean - It is a measure ...

Geometric mean - It is a measure of central tendency normally utilized to measure industrial increases rates. - It is explained as the nth root of the product of 'n' observa

Maxima and minima, Maxima and Minima We have to make a distinctio...

Maxima and Minima We have to make a distinction between relative maxima (or minima) and global maxima (or minima). Let f(x) be a function of x. Then the global maxi

Precalc, I dont understand arcsin and arccos and how to find the domain...h...

I dont understand arcsin and arccos and how to find the domain...help?

Limit problem, limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

limit x-a/|x-a| equals x-a [a]a [b]0 [c]-a [d]none 0f these

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd