Rational exponents, Mathematics

Assignment Help:

Now we have to start looking at more complicated exponents. In this section we are going to be evaluating rational exponents. i.e. exponents in the form

                                                                    b m/n

where m and n both are integers.

We will begin simple by looking at the given special case,

                                                         b1/ n

where n refer to an integer. Once we have figured out the more general case provided above will in fact be pretty simple to deal with.

Let's first described just what we mean by exponents of this form.

        a= b 1/n           is equivalent to                        an  =b

In other terms, when evaluating b 1/n, we are actually asking what number (in this case a) did we rise to the n to get b.  Frequently b 1/n is called the nth root of b.


Related Discussions:- Rational exponents

Find the value of the derivative, Given y = f(x) = x 2 + 2x +3 a) Use the ...

Given y = f(x) = x 2 + 2x +3 a) Use the definitional formula given below to find the derivative of the function. b) Find the value of the derivative at x = 3.

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

Scalar multiplication - vector arithmetic, Scalar Multiplication - Vector a...

Scalar Multiplication - Vector arithmetic Another arithmetic operation that we wish to look at is scalar multiplication. Specified the vector a → = (a 1 , a 2 , a 3 ) and any

Hypothesis testing, Hypothesis Testing Definition of Hypothesis Testing...

Hypothesis Testing Definition of Hypothesis Testing - A hypothesis is a claim or an opinion about an issue or item.  Hence it has to be tested statistically in order to esta

Find distance between points (b + c, Find the distance between the points (...

Find the distance between the points (b + c, c + a) and (c + a, a + b) . Ans : Use distance formula

Prove that prims algorithm produces a minimum spanning tree, Prove that Pri...

Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph. Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd