Rational exponents, Mathematics

Assignment Help:

Now we have to start looking at more complicated exponents. In this section we are going to be evaluating rational exponents. i.e. exponents in the form

                                                                    b m/n

where m and n both are integers.

We will begin simple by looking at the given special case,

                                                         b1/ n

where n refer to an integer. Once we have figured out the more general case provided above will in fact be pretty simple to deal with.

Let's first described just what we mean by exponents of this form.

        a= b 1/n           is equivalent to                        an  =b

In other terms, when evaluating b 1/n, we are actually asking what number (in this case a) did we rise to the n to get b.  Frequently b 1/n is called the nth root of b.


Related Discussions:- Rational exponents

integral 0 to pi e^cosx cos (sinx) dx, Let u = sin(x). Then du = cos(x) dx...

Let u = sin(x). Then du = cos(x) dx. So you can now antidifferentiate e^u du. This is e^u + C = e^sin(x) + C.  Then substitute your range 0 to pi. e^sin (pi)-e^sin(0) =0-0 =0

Write a procedure to obtain the inverse of a matrix, Write a procedure to o...

Write a procedure to obtain the inverse of an n by n matrix usingGaussian elimination. (You cannot use A - 1 or any of the built-in packages like 'MatrixInverse'.) Output any a

Integers, need answer to integers that equal 36

need answer to integers that equal 36

DIFFERENTIAL EQUATIONS, WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLED...

WHICH LIFE PROBLEMS CAN BE SOLVED USING THE KNOWLEDGE OF DIFFERNTIAL EQUATIONS?

Give the proofs in mathematics, Give the Proofs in Mathematics ? 1 Two...

Give the Proofs in Mathematics ? 1 Two-column deductive proof Proof: Statements                                                              Reasons * Start with given c

Solve the initial value by laplace transform method, Question: Solve the i...

Question: Solve the initial value problem 2x'' +x'-x =27 Cos2t +6 Sin 2t, x(0)=2 , x'(0)= -2 by using Laplace transform method.

Tangents, find a common tangent to two circles

find a common tangent to two circles

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd