Rate of change interpretation of derivative, Mathematics

Assignment Help:

Rate of Change : The first interpretation of derivative is rate of change.  It was not the primary problem which we looked at in the limit chapter, however it is the most significant interpretation of the derivative.  If f ( x ) represents a quantity at any x then the derivative f ′ ( a ) represents the instantaneous rate of change of f ( x )at x = a .

Example   Assume that the amount of water into a holding tank at t minutes is provided by

V (t ) = 2t 2 -16t + 35 .  Find out each of the following.

(a) At t = 1 minute is the volume of water within the tank increasing or decreasing?

(b) At t = 5 minutes is the volume of water within the tank increasing or decreasing?

(c) Is the volume of water within the tank changing faster at t = 1 or t = 5 minutes?

(d) Is the volume of water within tank ever not changing?  If so, when?  

Solution

In this instance we will utilizes both of the notations for the derivative simply to get you familiar along with the different notations.

We will require the rate of change of the volume to answer these questions. It means that we will require the derivative of this function as that will give us a formula for rate of change at any time t

The derivative is.

                               V ′ (t ) = 4t -16    OR dV/ dt = 4t -16

If rate of change was +ve then the quantity was increasing and if the rate of change was negative then it was decreasing.

Now we can work the problem.

 (a) Is the volume of water in the tank increasing or decreasing at t = 1minute?

In this case all that we require is the rate of change of the volume at t = 1or,

V ′ (1) = -12   OR

1409_derivation9.png

Hence, at t = 1 the rate of change is negative and therefore the volume have to be decreasing at this time.

 (b) Is the volume of water inside the tank increasing or decreasing at t = 5 minutes?

Again, we will require the rate of change at t =5 .

V ′ (5) = 4       OR

343_derivation10.png

In this the rate of change is positive & hence the volume have to be increasing at t = 5 .

 (c) Is the volume of water inside the tank changing faster at t = 1 or t = 5 minutes?

To solve out this question all that we look at is the size of rate of change & we don't worry regarding the sign of the rate of change.  All that we have to know here is that the larger the number the faster the rate of change. Thus, in this case the volume is changing faster at t = 1 than at t = 5 .

 (d) Is the volume of water inside the tank ever not changing? If so, then when?

The volume will not be changing if it has rate of change of zero.  In order to contain a rate of change of zero it means that the derivative has to be zero.  Thus, to solve this question we will then have to solve out

                            V ′ (t ) = 0                    OR                     dV/ dt = 0

It is easy enough to do.

4t -16 = 0       ⇒     t = 4

Thus at t = 4 the volume isn't changing.  Note as well that all this is saying is that for brief instant the volume isn't changing.  This doesn't say that at this instance the volume will quit changing permanently.

If we go back to our answers from parts (a) & (b) we can get an idea regarding what is going on.  At t = 1 the volume is decreasing and at t = 5 the volume is increasing.  Therefore at some point in time the volume have to switch from decreasing to increasing. That time is t = 4 .

It is the time wherein the volume goes from decreasing to increasing and hence for the briefest instant in time the volume will quit changing as it changes from decreasing to increasing.


Related Discussions:- Rate of change interpretation of derivative

Inverse laplace transforms, Determining the Laplace transform of a function...

Determining the Laplace transform of a function is not terribly hard if we've found a table of transforms opposite us to use as we saw in the previous section. What we would want t

Porportions, how do you solve for porportions?

how do you solve for porportions?

Boeing Company and Ingredient Branding Strategies, . The Boeing Company ma...

. The Boeing Company makes a number of different types of aircraft for the commercial airline industry, e.g., the 727, 747, 757, 767, and 777 jet models. Is there any way for Boei

Evaluate the convergence of the algorithms, Evaluate the convergence of the...

Evaluate the convergence of the algorithms: From the convergence proof of power method, LR and QR algorithm for the computation of eigenvalues we see that the easiest case to

Find the greatest number of 6 digits exactly divisible by 24, Find the grea...

Find the greatest number of 6 digits exactly divisible by 24, 15 and 36. (Ans:999720) Ans: LCM of 24, 15, 36 LCM = 3 × 2 × 2 × 2 × 3 × 5 = 360 Now, the greatest six digit

Define an ordered rooted tree, Define an ordered rooted tree. Cite any two ...

Define an ordered rooted tree. Cite any two applications of the tree structure, also illustrate using an example each the purpose of the usage.   Ans: A  tree is a graph like t

Fraction, maria has a slice of pizza that is 1/6 of the pizaa.Ben has a sli...

maria has a slice of pizza that is 1/6 of the pizaa.Ben has a slice of pizza that is 1/3 of the pizza, marias slice is bigger.draw pizzas to show how this is possible.

Find the area of shaded region of circle of radius, Find the area of shaded...

Find the area of shaded region of circle of radius =7cm, if ∠AOB=70 o , ∠COD=50 o and ∠EOF=60 o . (Ans:77cm 2 ) Ans:    Ar( Sector AOB + Sector COD + Sector OEF) =  7

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd