Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
RANDOM VARIABLE
A variable which assumes different numerical values as a result of random experiments or random occurrences is known as a random variable.
The rainfall measured in centimeters on each day of the monsoon season, the maximum temperature of each day for a city, the number of passengers traveling by train from Delhi to Mumbai everyday and the number of patients seen by a doctor each day are all examples of random variables. That is, the values assumed by these variables on each day would be random and cannot be accurately predicted. The prices of a share in a perfectly efficient market are supposed to follow a random walk in which the current price is totally independent of the price changes occurring in the past. Hence, previous price patterns cannot be used to predict the future prices.
If the random variable can assume any value within a given range, it is called a continuous random variable. On the other hand, if the random variable can assume only a limited number of values, it is called a discrete random variable. In examples cited in the previous para, rainfall and maximum temperature are examples of continuous random variables as they can register a wide variety of values within a given range. For instance, where the temperature is being measured in Celsius, within a range of 29oC to 30oC, the temperature could assume such values as 29.4oC, 29.75oC, 29.87oC. The number of persons traveling from Delhi to Mumbai everyday and the number of patients seen by a doctor each day are examples of discrete random variables as these values could only be whole numbers. You cannot have 353.5 persons traveling or 18.7 patients visiting the doctor.
Integral Test- Harmonic Series In harmonic series discussion we said that the harmonic series was a divergent series. It is now time to demonstrate that statement. This pr
whats 100 + 90 - 6
PROOF OF VARIOUS DERIVATIVE FACTS/FORMULAS/PROPERTIES Under this section we are going to prove several of the different derivative facts, formulas or/and properties which we en
1. A survey line on campus is measured to be 1000.00 ft long on horizontal ground. The elevation of the line is 700.00 feet and the geoid separation from ellipsoid to geoid is -110
give me the anwsers ..
Determine or find out if the subsequent series is convergent or divergent. If it converges find out its value. Solution To find out if the series is convergent we fir
What is Terminology of Quadratic Functions ? The function in x given by: F(x) = ax 2 + bx + c, where a 0 is called a quadratic function. The graph of a quadratic function is
a product can be anything including physical good,services,places,experience,nations,organizations,properties,information.discuss the statement?
a boy is six months old his sister was given birth to three month after him. if their cousin is 0.33years old, arrange their ages in ascending order
Let R be the relation on S = {1, 3, 6, 9, 27} defined by aRb iff a|b. (a) Write down the matrix of R. (b) Draw the digraph of R. (c) Explain whether R is reflexive, irrere
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd