Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
RANDOM VARIABLE
A variable which assumes different numerical values as a result of random experiments or random occurrences is known as a random variable.
The rainfall measured in centimeters on each day of the monsoon season, the maximum temperature of each day for a city, the number of passengers traveling by train from Delhi to Mumbai everyday and the number of patients seen by a doctor each day are all examples of random variables. That is, the values assumed by these variables on each day would be random and cannot be accurately predicted. The prices of a share in a perfectly efficient market are supposed to follow a random walk in which the current price is totally independent of the price changes occurring in the past. Hence, previous price patterns cannot be used to predict the future prices.
If the random variable can assume any value within a given range, it is called a continuous random variable. On the other hand, if the random variable can assume only a limited number of values, it is called a discrete random variable. In examples cited in the previous para, rainfall and maximum temperature are examples of continuous random variables as they can register a wide variety of values within a given range. For instance, where the temperature is being measured in Celsius, within a range of 29oC to 30oC, the temperature could assume such values as 29.4oC, 29.75oC, 29.87oC. The number of persons traveling from Delhi to Mumbai everyday and the number of patients seen by a doctor each day are examples of discrete random variables as these values could only be whole numbers. You cannot have 353.5 persons traveling or 18.7 patients visiting the doctor.
A survey of 400 of recently qualified chartered Accountant revealed that 112 joined industry, 120 stated practice & 160 joined the firms of practicing chartered accountants as paid
Explain the Absorbing States of a markov chain.
At rest, the human heart beats once every second. At the strongest part of the beat, a person's blood pressure peaks at 120mmHg. At the most relaxed part of the beat, a person's bl
1/cos(x-a)cos(x-b)
if ab=25 . a(5,x)and b(2,5) . find x.
divid
The population of a particular city is increasing at a rate proportional to its size. It follows the function P(t) = 1 + ke 0.1t where k is a constant and t is the time in years.
Assume that the amount of money in a bank account after t years is specified by, Find out the minimum & maximum amount of money in the account throughout the first 10 years
Short Cuts for solving quadratic equations
prove that every non-trivial ingetral solution (x,y,z)of the diophantine equation Xsquare +Ysquare=Zsquare satisfies gcd(x,y)=gcd(x,z)=gcd(y,z)
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd