Quick sort, Data Structure & Algorithms

Assignment Help:

This is the most extensively used internal sorting algorithm. In its fundamental form, it was invented by C.A.R. Hoare in the year of 1960. Its popularity lies in the easiness of implementation, moderate use of resources & acceptable behavior for a variety of sorting cases. The fundamental of quick sort is the divide & conquer strategy that means Divide the problem [list to be sorted] into sub-problems [sub-lists], till solved sub problems [sorted sub-lists] are found. It is implemented as follows:

Select one item A[I] from the list A[ ].

Rearrange the list so that this item come to the appropriate position, that means all preceding items have a lesser value and all succeeding items contain a greater value than this item.

1.      Place A[0], A[1] .. A[I-1] in sublist 1

2.      A[I]

3.      Place A[I + 1], A[I + 2] ... A[N] in sublist 2

Repeat steps 1 and step 2 for sublist1 and sublist2 until A[ ] is a sorted list. As can be seen, this algorithm contains a recursive structure.

The divide' procedure is of utmost importance in this algorithm. Usually this is implemented as follows:

1.      Select A[I] as the dividing element.

2.         From the left end of the list (A[O] onwards) scan until an item A[R] is found whose value is greater than A[I].

3.         From the right end of list [A[N] backwards] scan until an item A[L] is found whose value is less than A[1].

4.      Swap A[R] & A[L].

5.      Continue steps 2, 3 & 4 till the scan pointers cross. End at this stage.

6.      At this point, sublist1 and sublist2 are ready.

7.      Now do the same for each of sublist1 & sublist2.


Related Discussions:- Quick sort

Breadth-first search , 1. Apply the variant Breadth-First Search algorithm ...

1. Apply the variant Breadth-First Search algorithm as shown in Figure 2 to the attached graph. This variant is used for computing the shortest distance to each vertex from the sta

Algorithm to build a binary tree , Q. Give the algorithm to build a binary ...

Q. Give the algorithm to build a binary tree where the yields of preorder and post order traversal are given to us.

State in brief about assertion, State  in brief about assertion Asser...

State  in brief about assertion Assertion: A statement which should be true at a designated point in a program.

The various ways in which lc code can be accessed, Problem Your LC code...

Problem Your LC code is stored in a memory location as shown and the variable name is LC                  LC Memory address       Content(LC code)

Algorithm for linear search, Here,  m represents the unordered array of ele...

Here,  m represents the unordered array of elements n  represents number of elements in the array and el  represents the value to be searched in the list Sep 1: [Initialize]

Explain insertion sort, Q. Explain the insertion sort with a proper algorit...

Q. Explain the insertion sort with a proper algorithm. What is the complication of insertion sort in the worst case?

Collision resolution techniques, complete information about collision resol...

complete information about collision resolution techniques

Whether a binary tree is a binary search tree or not, Write an algorithm to...

Write an algorithm to test whether a Binary Tree is a Binary Search Tree. The algorithm to test whether a Binary tree is as Binary Search tree is as follows: bstree(*tree) {

Define stack lifo, A stack is a last in, first out (LIFO) abstract data typ...

A stack is a last in, first out (LIFO) abstract data type and sequential data structure. A stack may have any abstract data type as a component, but is characterized by two fundame

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd