Quantitative, Mathematics

Assignment Help:
A lobster catcher spends $12 500 per month to maintain a lobster boat. He plans to catch an average of 20 days per month during lobster season. For each day, he must allow approximately $95 for fuel and ice for the boat. If his packaging and distribution costs are $2.00 per kilogram of lobster, and if lobster sells for $6.00 per kilogram: (Excel is not required for this question: Just Type your answer with proper steps)

a. How many kilograms of lobster must he catch per day to break even?

b. Suppose the catcher wants to put away money to sustain himself through inclement weather and off-season expenses. He decides that he would like to save $10 000 per month. How much lobster should he plan to catch to make this plan possible?

Related Discussions:- Quantitative

Children have their own strategies for learning maths, Children Have Their ...

Children Have Their Own Strategies For Learning Vibhor, aged 7, was once asked if he knew what 'seven lots of eight' are. He said he didn't. He was then asked, "Can you work it

Evaluate following unit circle, Evaluate following sin 2 ?/3   and sin (-2 ...

Evaluate following sin 2 ?/3   and sin (-2 ?/3) Solution: The first evaluation in this part uses the angle 2 ?/3.  It is not on our unit circle above, though notice that  2 ?/

Application of linear function, four times an unknown number is equal to tw...

four times an unknown number is equal to twice the sum of five and that unknown number

Explain id amortisation is proper impairment will not arise, If depreciatio...

If depreciation/amortisation is done properly, impairment adjustments will not arise.   Required: Do you agree with the above statement? Critically and fully explain your

Fundamental theorem of calculus, Fundamental Theorem of Calculus, Part II ...

Fundamental Theorem of Calculus, Part II Assume f ( x ) is a continuous function on [a,b] and also assume that F ( x ) is any anti- derivative for f ( x ) . Then,

Calculate signle set of knapsack weight, Suppose S = {vi} and T = {ti} are ...

Suppose S = {vi} and T = {ti} are "easy" sets of knapsak weight. Also, P and q are primes p > ?Si and q > ?ti. We can combine S and T into a signle set of knapsack weight as follow

Find a maximum flow and a minimum cut, Use the maximum flow algorithm to fi...

Use the maximum flow algorithm to find a maximum flow and a minimum cut in the given network, where the capacities of arc CF, EC , DE and BD are w = 13, x = 7, y =1, a

Learning and formulating maths teaching strategies, Before going further, l...

Before going further, let us repeat an aspect of learning which is useful to keep in mind while formulating teaching strategies. A child who can add or subtract in the context of s

Hierarchical multiple regression, A group of children who lived near a lead...

A group of children who lived near a lead smelter in El Paso, Texas, were identified and their blood levels of lead were measured. An exposed group of 46 children were identified w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd