Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
what is number of quadratic equation that are unchanged by squaring their roots is There are four such cases x2 =0 root 0 (x-1)2=0 root 1 x(x+1)=0 roots 0 and 1 x2+x+1=0 roots ω and ω2 let x2 +bx +c=0 ............1 not let another equation whoose roots are square of this equation so X=x2 or x=√X put value of x X +b√X +c =0 or X +c =-b√X square X2 +c2 +2cX =b2X X2 +(2c-b2)X + c2 =0..................2 root of equation 2 is the square of root of equation 1 both equation will be same if their coefficient are in proportion 1/1 =b/(2c-b2) =c/c 2 b= 2c-b2 ................3 c=c2 ....................3 from equation 3 c=0 or 1 for c =0 b= 0 and -1 for c=1 b= 1 and -2 so four combination are possible
what is number of quadratic equation that are unchanged by squaring their roots is
There are four such cases x2 =0 root 0
(x-1)2=0 root 1
x(x+1)=0 roots 0 and 1
x2+x+1=0 roots ω and ω2
let x2 +bx +c=0 ............1
not let another equation whoose roots are square of this equation
so X=x2 or x=√X
put value of x
X +b√X +c =0
or X +c =-b√X
square
X2 +c2 +2cX =b2X
X2 +(2c-b2)X + c2 =0..................2
root of equation 2 is the square of root of equation 1
both equation will be same if their coefficient are in proportion
1/1 =b/(2c-b2) =c/c 2
b= 2c-b2 ................3
c=c2 ....................3
from equation 3 c=0 or 1
for c =0 b= 0 and -1
for c=1 b= 1 and -2
so four combination are possible
1. In 1900, a certain country's population was 77,977,459 and it's area was 2,821,924 square miles, In 2000, the country's population was 283,575,229 and its area was 3,551,003 sq
Find out if the following set of vectors are linearly independent or linearly dependent. If they are linearly dependent get the relationship among them. Solution : Ther
Find the least number that is divisible by all numbers between 1 and 10 (both inclusive). Ans: The required number is the LCM of 1,2,3,4,5,6,7,8,9,10 ∴ LCM = 2 × 2
Prove that a m + n + a m - n =2a m Ans: a m + n = a 1 + (m + n - 1) d a m-n = a 1 + (m - n -1) d a m = a 1 + (m-1) d Add 1 & 2 a m+n + a m-n =
#question Show that the enveloping cylinder of the conicoid ax 2 + by 2 + cz 2 = 1 with generators perpendicular to the z-axis meets the plane z = 0 in parabolas
a company of 10000 shares of rs 100 each declares a annual dividend of 5 %.what is the total amount dividend paid by the company
Compute the volume and surface area of a right circular cone: Compute the volume and surface area of a right circular cone along with r = 3", h = 4", and l = 5". Be sure to
Index of summation - Sequences and Series Here now, in the i is termed as the index of summation or just index for short and note that the letter we employ to represent
6x^7-2x^3+4x-16 / 3x^2-7x+9
The mode Merits i. This can be determined from incomplete data given the observations along with the highest frequency are already known ii. The mode has some applic
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd