Prove that the poset has a unique least element, Mathematics

Assignment Help:

Prove that the Poset has a unique least element

Prove that if (A, <) has a least element, then (A,≤)  has a unique least element.

Ans: Let (A, ≤) be a poset. Suppose the poset A has two least elements x and y. Since x is the least element, it implies that x ≤ y. Using the same argument, we can say that y ≤ x, since y is supposed to be another least element of the same poset. ≤ is an anti-symmetric relation, so x ≤ y and y ≤ x ⇒ x = y. Thus, there is at most one least element in any poset.


Related Discussions:- Prove that the poset has a unique least element

Discrete math, ) Show that the following argument is valid: (~p ? q) =>...

) Show that the following argument is valid: (~p ? q) => r s ? ~q ~t p => t (~p ? r) => ~s ------------------------ ? ~q 2) Show that the following argum

Examining a related problem, how to explain this strategy? how to do this s...

how to explain this strategy? how to do this strategy in solving a problem? can you give some example on how to solve this kind of strategy.

What is probability that a person selected at random eyes, If 65% of the po...

If 65% of the populations have black eyes, 25% have brown eyes and the remaining have blue eyes. What is the probability that a person selected at random has (i) Blue eyes (ii) Bro

Series, find the series of the first twenty terms

find the series of the first twenty terms

Proof of the properties of vector arithmetic, Proof of the Properties of ve...

Proof of the Properties of vector arithmetic Proof of a(v → + w → ) = av → + aw → We will begin with the two vectors, v → = (v 1 , v 2 ,..., v n )and w? = w

Vectors, why minimum three coplanar vectors are required to give zero resul...

why minimum three coplanar vectors are required to give zero resultant and not two?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd