Prove that the poset has a unique least element, Mathematics

Assignment Help:

Prove that the Poset has a unique least element

Prove that if (A, <) has a least element, then (A,≤)  has a unique least element.

Ans: Let (A, ≤) be a poset. Suppose the poset A has two least elements x and y. Since x is the least element, it implies that x ≤ y. Using the same argument, we can say that y ≤ x, since y is supposed to be another least element of the same poset. ≤ is an anti-symmetric relation, so x ≤ y and y ≤ x ⇒ x = y. Thus, there is at most one least element in any poset.


Related Discussions:- Prove that the poset has a unique least element

Advantages of peer interaction in learning maths, Can you think of some mor...

Can you think of some more advantages of peer interaction and child-to child learning? If you agree that children learn a lot from each other, then how can we maximise such oppo

Diferential equations, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xex} as its fundamental set

Homework help, Eduardo is combining two 6 inches pieces of wood with a piec...

Eduardo is combining two 6 inches pieces of wood with a piece that measures 4 inches. How many total inches of wood does he have?

How long will the board be after he makes the cut, Tom is cutting a piece o...

Tom is cutting a piece of wood to form a shelf. He cut the wood to 3.5 feet, but it is too long to fit in the bookshelf he is forming. He decides to cut 0.25 feet off the board. Ho

Trigonometry, In the riangle ABC the AB=12 cm,AC=28 cm and angle ABC=120 de...

In the riangle ABC the AB=12 cm,AC=28 cm and angle ABC=120 degrees.BC=?

Simple derivatives, Simple derivatives Example   Differentiate followin...

Simple derivatives Example   Differentiate following.  (5x 3   - 7 x + 1) 5 ,[ f ( x )] 5 ,[ y ( x )] 5 Solution: Here , with the first function we're being asked to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd