Prove that sec2+cosec2 can never be less than 2, Mathematics

Assignment Help:

Prove that sec2θ+cosec2θ can never be less than 2.

Ans:    S.T Sec2θ + Cosec2θ can never be less than 2.

If possible let it be less than 2.

1 + Tan2θ + 1 + Cot2θ < 2.

⇒   2 + Tan2θ + Cot2θ

⇒   (Tanθ + Cotθ)2 < 2.

Which is not possible.

 


Related Discussions:- Prove that sec2+cosec2 can never be less than 2

Undamped - forced vibrations, We will firstly notice the undamped case. The...

We will firstly notice the undamped case. The differential equation under this case is, mu'' + ku  = F(t) It is just a non-homogeneous differential equation and we identify h

Find the area of the shaded region of square, In the adjoining figure, ABCD...

In the adjoining figure, ABCD is a square of side 6cm.  Find the area of the shaded region. Ans:    From P draw PQ ⊥ AB AQ = QB = 3cm (Ans: 34.428 sq cm) Join PB

Evaluate indefinite integrals, Evaluate following indefinite integrals. ...

Evaluate following indefinite integrals.  (a) ∫ 5t 3 -10t -6 + 4 dt  (b) ∫ dy Solution  (a) ∫ 5t 3 -10t -6 + 4 dt There's not whole lot to do here other than u

Piecewise, x=±4, if -2 = y =0 x=±2, if -2 = y = 0

x=±4, if -2 = y =0 x=±2, if -2 = y = 0

Calculate magnitude and direction of maximum principle, At a point in a loa...

At a point in a loaded member, the stresses relative to an x, y, z coordinate system are given by Calculate the magnitude and direction of the maximum principal stress.

What is the meaning of the f-statistic and f test, You are given the follow...

You are given the following regression results estimating the demand for widgets based on time series data for the past 40 months. Q t = 2.5 - 0.3 x P t + 12 x M t Where Q

Circles, how to find equations of circles when given equations of centres o...

how to find equations of circles when given equations of centres on which it lies?

Hi, can i get job of teaching maths here

can i get job of teaching maths here

Use the definition of the right- and left-handed limits, Use the definition...

Use the definition of the limit to prove the given limit. Solution Let ε> 0 is any number then we have to find a number δ > 0 so that the following will be true. |

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd