Prove that prims algorithm produces a minimum spanning tree, Mathematics

Assignment Help:

Prove that Prim's algorithm produces a minimum spanning tree of a connected weighted graph.

Ans: Suppose G be a connected, weighted graph. At each iteration of Prim's algorithm, an edge should be found that connects a vertex in a subgraph to a vertex outside the subgraph. As G is connected, there will all time be a path to each vertex. The output T of Prim's algorithm is a tree, as the edge and vertex added to T are connected. Suppose T1 be a minimum spanning tree of G. If T1=T then T is a minimum spanning tree. If not, let e be the first edge added throughout the construction of T that is not in T1, and V be the set of vertices connected by the edges added previous to e. After that one endpoint of e is in V and the other is not. As T1 is a spanning tree of G, there is a path in T1 joining the two endpoints. As one travels along with the path, one should encounter an edge f joining a vertex in V to one that is not in V. Now here, at the iteration while e was added to T, f could as well have been added and it would be added in place of e if its weight was less than e. As f was not added, we conclude that w(f) ≥ w(e).

Suppose T2 be the graph acquired by removing f and adding e from T1. It is simple to show that T2 is connected, has similar number of edges as T1, and the total weights of its edges is not larger as compared to that of T1, therefore it is as well a minimum spanning tree of G and it consists of e and all the edges added before it throughout the construction of V. Repeat the steps above and we will eventually acquired a minimum spanning tree of G that is similar to T. This depicts T is a minimum spanning tree.

 


Related Discussions:- Prove that prims algorithm produces a minimum spanning tree

Patrice has worked a certain how many hours has she worked, Patrice has wor...

Patrice has worked a certain amount of hours so far this week. Tomorrow she will work four more hours to finish out the week along with a total of 10 hours. How many hours has she

Nonhomogeneous systems, We now require addressing nonhomogeneous systems in...

We now require addressing nonhomogeneous systems in brief. Both of the methods which we looked at back in the second order differential equations section can also be used now.  Sin

.., Ask quesLa proporción de empleados de una empresa que usan su auto para...

Ask quesLa proporción de empleados de una empresa que usan su auto para ir al trabajo es 5:16. Si hay un total de 800 empleados, diga la cantidad de autos que se espera que haya es

Determines the first four derivatives of y = cos x, Example    determines t...

Example    determines the first four derivatives for following.                                                                  y = cos x Solution: Again, let's just do so

Word problem, On a canoe trip. a person paddled upstream against the curren...

On a canoe trip. a person paddled upstream against the current ata an average of 2mi/h. the return trip with the current at 3mi/h. Need to find the paddling spped in still water an

Travel time, you are driving on a freeway to a tour that is 500 kilometers ...

you are driving on a freeway to a tour that is 500 kilometers from your home. after 30 minutes , you pass a freeway exit that you know is 50 kilometer from your home. assuming that

Matrix addition and subtraction, What is Matrix addition and subtraction? I...

What is Matrix addition and subtraction? Illustrate the procedure of Matrix addition and subtraction.

Green function, greens function for x''''=0, x(1)=0, x''(0)+x''(1)=0 is G(t...

greens function for x''''=0, x(1)=0, x''(0)+x''(1)=0 is G(t,s)= {1-s for t or equal to s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd