Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
ABCD is a rectangle. Δ ADE and Δ ABF are two triangles such that ∠E=∠F as shown in the figure. Prove that AD x AF=AE x AB.
Ans: Consider Δ ADE and Δ ABF
∠D = ∠B = 90o
∠E = ∠F (given)
∴Δ ADE ≅ Δ ABF
AD/AB = AE/AF
⇒ AD x AF = AB x AE Proved
Systematic Sampling Systematic sampling is a part of simple random sampling in descending or ascending orders. In systematic sampling a sample is drawn according to some predet
statement of gauss thm
Solve for x: 4 log x = log (15 x 2 + 16) Solution: x 4 - 15 x 2 - 16 = 0 (x 2 + 1)(x 2 - 16) = 0 x = ± 4 But log x is
Determine the tangent line to f ( x ) = 15 - 2x 2 at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li
Solve 6 sin ( x/2)= 1 on [-20,30] Solution Let's first work out calculator of the way since that isn't where the difference comes into play. sin( x/2)= 1/6 ⇒x/2= sin
Describe Square and Diagonal Matrix.
X= acost, Y= bsint find paramatric equation
A researcher is investigating the effectiveness of a new medication for lowering blood pressure for individuals with systolic pressure greater than 140. For this population, systol
Cardioids and Limacons These can be split up into the following three cases. 1. Cardioids: r = a + a cos θ and r = a + a sin θ. These encompass a graph that is vaguel
Derivative with Polar Coordinates dy/dx = (dr/dθ (sin θ) + r cos θ) / (dr/dθ (cosθ) - r sinθ) Note: Rather than trying to keep in mind this formula it would possibly be easi
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd