Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that A tree with n vertices has (n - 1) edges.
Ans: From the definition of a tree a root comprise indegree zero and all other nodes comprise indegree one. There should be (n - 1) incoming arcs to the (n - 1) non-root nodes. If there is any another arc, this arc should be terminating at any of the nodes. If the node is root, after that its indegree will become one and that is in contradiction along with the fact that root all time has indegree zero. If the end point of this extra edge is any non-root node after that its indegree will be two, which is once again a contradiction. Therefore there cannot be more arcs. Hence, a tree of n vertices will have exactly (n - 1) edges.
Interesting relationship between the graph of a function and the graph of its inverse : There is one last topic that we have to address quickly before we leave this section. Ther
Q. Show Trigonometric Functions on a Graph? Ans. By discussing the trig functions with respect to an angle in a right-angle triangle, we have only considered angles betwee
solve for y 3x+4y=7
give some examples
Let's here start thinking regarding that how to solve nonhomogeneous differential equations. A second order, linear non-homogeneous differential equation is as y′′ + p (t) y′ +
solve and graph the solution set 7x-4 > 5x + 0
Vector theories
Find the remainder when 7^103 is divided by 24 Solution) we know by the concept of mod that..... 49 is congruent to 1 mod 24(means if 1 is subtracted fom 49 u get 48 which is
Nine minus five times a number, x, is no less than 39. Which of the subsequent expressions represents all the possible values of the number? Translate the sentence, "Nine minus
how to find the indicated term?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd