Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that a simple graph is connected if and only if it has a spanning tree.
Ans: First assume that a simple graph G has a spanning tree T. T consists of every node of G. By the definition of a tree, there is a path among any two nodes of T. As T is a subgraph of G, there is a path among each pair of nodes in G. Hence G is connected.
Here now let G is connected. If G is a tree then nothing to prove. If G is not a tree, it must consist of a simple circuit. Let G has n nodes. We can choose (n - 1) arcs from G in such type of a way that they not form a circuit. It results into a subgraph comprising all nodes and only (n - 1) arcs. So by definition this subgraph is a spanning tree.
Intervals which extend indefinitely in both the directions are known as unbounded intervals. These are written with the aid of symbols +∞ and - ∞ . The various types
A computer is programmed to scan the digits of the counting numbers.For example,if it scans 1 2 3 4 5 6 7 8 9 10 11 12 13 then it has scanned 17 digits all together. If the comput
The probability that a person will get an electric contract is 2/5 and the contract that he will not get plumbing contract is 4/7.If the probability of getting at least one contra
the segments shown could form a triangle
why arcsin(sinq)=pi-q [pi/2 3pi/2]
The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to
Proof of: ∫ f(x) + g(x) dx = ∫ f(x) dx + ∫g(x) dx It is also a very easy proof. Assume that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of
Safe deposit boxes are rented at the bank. The dimensions of a box are (22x5x5) in. Determine the volume of the box? a. 220 in 3 b. 550 in 3 c. 490 in 3 d. 360 in 3
HOW MANY ZERO ARE THERE AT THE END OF 200
terminology and requirements of linear programming
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd