Prove that 2b3-3abc+a2d=0, Mathematics

Assignment Help:

If  the  ratios  of  the  polynomial ax3+3bx2+3cx+d  are  in  AP,  Prove  that  2b3-3abc+a2d=0

Ans: Let p(x) = ax3 + 3bx2 + 3cx + d and α , β , r are their three Zeros but zero are in AP

let α = m - n , β = m, r = m + n

sum = α+β+ r = - b/a

substitute this sum , to get = m= -b/a

Now taking two zeros as sum αβ +β r +αr =  c a

(m-n)m + m(m+n) + (m + n)(m - n) = 3c/a

Solve this problem , then we get

3b2  - 3ac/a2 = n2

 

Product αβ r = d/ a

(m-n)m (m+n) = -d/a

(m2 -n2)m = - d/a

[(-b/a)2-(3b2 -3ac/a2)](-b/a) = -d/a

Simplifying we get

2b3 - 3abc + a2 d = 0


Related Discussions:- Prove that 2b3-3abc+a2d=0

Share and divivdend, i m making a project on share and dividend. will u pls...

i m making a project on share and dividend. will u pls give the all of 10pages information ?

Permission for xii class, Is there any class in expertsmind for second year...

Is there any class in expertsmind for second year english.?

Show that 3cos-4cos3 = 0, If sin? =  1/2 , show that 3cos?-4cos 3 ? = 0. ...

If sin? =  1/2 , show that 3cos?-4cos 3 ? = 0. Ans:    Sin ? = ½ ⇒ ? = 30 o Substituting in place of ? =30 o . We get 0.

Karatsubas algorithm, Consider the following two polynomials in F 17 [x] ...

Consider the following two polynomials in F 17 [x]   (a) Use Karatsuba's algorithm, by hand, to multiply these two polynomials. (b) Use the FFT algorithm, by hand, to

General approach of exponential functions, General approach of Exponential ...

General approach of Exponential Functions : Before getting to this function let's take a much more general approach to things. Let's begin with b = 0 , b ≠ 1. Then an exponential f

Number and operations, 1a.if the williams spend $385 a month on food what i...

1a.if the williams spend $385 a month on food what is their monthly income

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd