Prove - digraph of a partial order has no cycle more than 1, Mathematics

Assignment Help:

Prove that the Digraph of a partial order has no cycle of length greater than 1.

Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A. This entails that there are n distinct elements a1 , a2 , a3 , ..., an like that a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an and an ≤ a1 . Applying the transitivity n-1 times on a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an , we get a1 ≤ an .As relation ≤ is anti-symmetric a1 ≤ an and an ≤ a1 together entails that a1 = an . This is contrary to the fact that all a1, a2, a3... an are distinct. So, our assumption that there is a cycle of length n ≥ 2 in the digraph of a partial order relation is wrong.

 


Related Discussions:- Prove - digraph of a partial order has no cycle more than 1

Hi, how do you find the distance between the sun and earth

how do you find the distance between the sun and earth

Geometry, all basic knowledge related to geometry

all basic knowledge related to geometry

Differential equations, Find the normalized differential equation which has...

Find the normalized differential equation which has {x, xex} as its fundamental set

Determine rank correlation coefficient, Determine Rank Correlation Coef...

Determine Rank Correlation Coefficient A group of 8 accountancy students are tested in Quantitative Techniques and Law II.  Their rankings in the two tests were as:

Rotational symmetry .., write down the order of rotational symmetry of the ...

write down the order of rotational symmetry of the rectangle

Find the larger of two supplementary angles, The larger of two supplementar...

The larger of two supplementary angles exceeds the smaller by 180, find them. (Ans:990,810) Ans:    x + y = 180 0          x - y =  18 0        -----------------

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd