Prove - digraph of a partial order has no cycle more than 1, Mathematics

Assignment Help:

Prove that the Digraph of a partial order has no cycle of length greater than 1.

Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A. This entails that there are n distinct elements a1 , a2 , a3 , ..., an like that a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an and an ≤ a1 . Applying the transitivity n-1 times on a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an , we get a1 ≤ an .As relation ≤ is anti-symmetric a1 ≤ an and an ≤ a1 together entails that a1 = an . This is contrary to the fact that all a1, a2, a3... an are distinct. So, our assumption that there is a cycle of length n ≥ 2 in the digraph of a partial order relation is wrong.

 


Related Discussions:- Prove - digraph of a partial order has no cycle more than 1

Prove which divide these sides in the ratio 2: 1, In a right triangle ABC, ...

In a right triangle ABC, right angled at C, P and Q are points of the sides CA and CB respectively, which divide these sides in the ratio 2: 1. Prove that  9AQ 2 = 9AC 2 +4BC 2

First order differential equations, In this section we will consider for so...

In this section we will consider for solving first order differential equations. The most common first order differential equation can be written as: dy/dt = f(y,t) As we wil

Integers, students dont retain the topic, hoe to make it easier?

students dont retain the topic, hoe to make it easier?

Areas related to circles in mensuration, AREAS  RELATED TO CIRCLES The...

AREAS  RELATED TO CIRCLES The  mathematical  sciences particularly  exhibit  order,  symmetry,  and limitation;  and  these  are the  greatest  forms  of the beautiful. In t

Calculate the probability, Calculate the introduction to Probability? P...

Calculate the introduction to Probability? Probability refers to the chance that an event will happen. Probability is presented as the ratio of the number of ways an event can

Algebra2;, log6 X + log6 (x-5) = 1

log6 X + log6 (x-5) = 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd