Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that the Digraph of a partial order has no cycle of length greater than 1.
Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A. This entails that there are n distinct elements a1 , a2 , a3 , ..., an like that a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an and an ≤ a1 . Applying the transitivity n-1 times on a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an , we get a1 ≤ an .As relation ≤ is anti-symmetric a1 ≤ an and an ≤ a1 together entails that a1 = an . This is contrary to the fact that all a1, a2, a3... an are distinct. So, our assumption that there is a cycle of length n ≥ 2 in the digraph of a partial order relation is wrong.
With reference to Fig. 1(a) show that the magnification of an object is given by M=SID/SOD. With reference to Fig. 1(b) show that the size of the penumbra (blur) f is given by f
The two sides of a triangle are 17 cm and 28 cm long, and the length of the median drawn to the third side is equal to 19.5 cm. Find the distance from an endpoint of this median to
Five more than the quotient of a number and 2 is at least that number. What is the greatest value of the number? Let x = the number. Notice that quotient is a key word for div
How to get assignment to solve and earn money
assignment of marketing mix on healthservices
how do you find the tan, sin, and cos.
1. Consider the relation on A = {1, 2, 3, 4} with relation matrix: Assume that the rows and columns of the matrix refer to the elements of A in the order 1, 2, 3, 4. (a)
what is quantity ?
my daughter is having trouble with math she cant understand why please help us
how to evaluate the sums
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd