Prove - digraph of a partial order has no cycle more than 1, Mathematics

Assignment Help:

Prove that the Digraph of a partial order has no cycle of length greater than 1.

Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A. This entails that there are n distinct elements a1 , a2 , a3 , ..., an like that a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an and an ≤ a1 . Applying the transitivity n-1 times on a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an , we get a1 ≤ an .As relation ≤ is anti-symmetric a1 ≤ an and an ≤ a1 together entails that a1 = an . This is contrary to the fact that all a1, a2, a3... an are distinct. So, our assumption that there is a cycle of length n ≥ 2 in the digraph of a partial order relation is wrong.

 


Related Discussions:- Prove - digraph of a partial order has no cycle more than 1

Compound angles, determine the exact value of cos (11*3.145/6)

determine the exact value of cos (11*3.145/6)

Rolles theorem, Rolle's Theorem  Assume f(x) is a function which satis...

Rolle's Theorem  Assume f(x) is a function which satisfies all of the following. 1. f(x) is continuous in the closed interval [a,b]. 2. f(x) is differentiable in the ope

Shares and dividends, at what price a 6.25%rs 100 share be quoted when the ...

at what price a 6.25%rs 100 share be quoted when the money is worth 5%

Algebra, 25 algebraic equations that equal 36

25 algebraic equations that equal 36

Maths, what is the diameter of a circle

what is the diameter of a circle

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd