Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that the Digraph of a partial order has no cycle of length greater than 1.
Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A. This entails that there are n distinct elements a1 , a2 , a3 , ..., an like that a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an and an ≤ a1 . Applying the transitivity n-1 times on a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an , we get a1 ≤ an .As relation ≤ is anti-symmetric a1 ≤ an and an ≤ a1 together entails that a1 = an . This is contrary to the fact that all a1, a2, a3... an are distinct. So, our assumption that there is a cycle of length n ≥ 2 in the digraph of a partial order relation is wrong.
briefly explain how the famous equation for the loss of heat in a cylindrical pipe is derived
reflection about index number in a creative way
Linear Equations We'll begin the solving portion of this chapter by solving linear equations. Standard form of a linear equation: A linear equation is any equation whi
Intervals which extend indefinitely in both the directions are known as unbounded intervals. These are written with the aid of symbols +∞ and - ∞ . The various types
what is the perimeter of a rhombus
Limits The concept of a limit is fundamental in calculus. Often, we are interested to know the behavior of f(x) as the independent variable x approaches some
Example of inflection point Determine the points of inflection on the curve of the function y = x 3 Solution The only possible inflexion points will happen where
what is principle of marketing?
1+1=
An inground pool is pooring with water. The shallow end is 3 ft deep and gradually slopes to the deepest end, which is 10 ft deep. The width of the pool is 30 ft and the length is
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd