Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Prove that the Digraph of a partial order has no cycle of length greater than 1.
Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A. This entails that there are n distinct elements a1 , a2 , a3 , ..., an like that a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an and an ≤ a1 . Applying the transitivity n-1 times on a1 ≤ a2 , a2 ≤ a3 , ..., an-1 ≤ an , we get a1 ≤ an .As relation ≤ is anti-symmetric a1 ≤ an and an ≤ a1 together entails that a1 = an . This is contrary to the fact that all a1, a2, a3... an are distinct. So, our assumption that there is a cycle of length n ≥ 2 in the digraph of a partial order relation is wrong.
100+5000
determine the exact value of cos (11*3.145/6)
Rolle's Theorem Assume f(x) is a function which satisfies all of the following. 1. f(x) is continuous in the closed interval [a,b]. 2. f(x) is differentiable in the ope
at what price a 6.25%rs 100 share be quoted when the money is worth 5%
how to count by 45s
Catalans Conjecture
25 algebraic equations that equal 36
what is a Benchmark Fraction
how do you do it
what is the diameter of a circle
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd