Prove any prime number is irrational, Mathematics

Assignment Help:

1. Show that there do not exist integers x and y for which 110x + 315y = 12.

2. If a and b are odd integers, prove that a2 +b2 is divisible by 2 but is NOT divisible by 4. Hint:

Any odd number can be written 2k + 1 for some integer k.

3. Prove that for any prime number p, √ p is irrational. Hint: Follow the same method that was used to prove √ 2 is irrational, by first supposing √ p can be expressed as a=b.

 


Related Discussions:- Prove any prime number is irrational

Determine boolean conjunctive query are cyclic or acyclic, Are the followin...

Are the following Boolean conjunctive queries cyclic or acyclic? (a) a(A,B) Λ b(C,B) Λ c(D,B) Λ d(B,E) Λ e(E,F) Λ f(E,G) Λ g(E,H). (b) a(A,B,C) Λ b(A,B,D) Λ c(C,D) Λ d(A,B,C,

Simplification, If 3/5=5,4/7=8,8/7=6 then, what should 9/6 be ?

If 3/5=5,4/7=8,8/7=6 then, what should 9/6 be ?

Determine matrix of transformation for orthogonal projection, Determine the...

Determine the matrix of transformation for the orthogonal projection onto the line L that passes through the origin and is in the direction Û=(3/13 , 4/13 , 12/13). Determine the r

Shortcomng methods for teaching hto in maths, 1.What are the strengths and ...

1.What are the strengths and shortcomings of the methods of teaching H T 0 in Examples 1 and 2? 2. a) Think of another activity for getting children to practise H T 0, especia

Factoring quadratic polynomials, Primary, note that quadratic is another te...

Primary, note that quadratic is another term for second degree polynomial. Thus we know that the largest exponent into a quadratic polynomial will be a2. In these problems we will

Types of relation, Relations in a Set: Let consider R be a relation fro...

Relations in a Set: Let consider R be a relation from A to B. If B = A, then R is known as a relation in A. Thus relation in a set A is a subset of A ΧA. Identity Relation:

What difference among the areas of the two sections of a, If the areas of t...

If the areas of two sections of a garden are 6a + 2 and 5a, what is the difference among the areas of the two sections within terms of a? Because the question asks for the diff

Solid geomerty, find the equation to the sphere through the circle xsqaure+...

find the equation to the sphere through the circle xsqaure+ysquare+zsquare+=9 , 2x+3y+4z=5

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd