Properties of definite integral, Mathematics

Assignment Help:

Properties

1.  ∫baf ( x ) dx = -∫ba f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral while we do.

2.  ∫aa f(x)dx = 0 . If the upper & lower limits are the similar then there is no work to accomplish, the integral is zero.

3.  ∫ba cf ( x ) dx = c∫ba f (x ) dx  , where c refer for any number.  Therefore, as with limits, derivatives, & indefinite integrals we can factor out a constant.

4.  ∫ba f ( x ) dx± g ( x ) dx = ∫ba f ( x ) dx± ∫ba g ( x ) dx .We can break up definite integrals across a sum or difference.

5.  ∫ba f ( x ) dx =∫ca f (x ) dx  +∫ba f (x ) dx  where c refer to any number.  This property is more significant than we might realize at first. One of the main utilizations of this property is to tell us how we can integrate function over the adjacent intervals, [a,c] and [c,b]. However note that c doesn't have to be between a & b.

6.  ∫ba f ( x ) dx =∫ba f ( t ) dt .The point of this property is to notice that as far as the function & limits are the similar the variable of integration that we utilizes in the definite integral won't affect the answer.

7. ∫ab c dx = c (b - a ) , c is refer for any number.

8.  If f ( x ) ≥ 0 for a ≤ x ≤ b then  ∫ab f(x) dx ≥ 0 .

9.  If f ( x ) ≥ g (x ) for a ≤ x ≤ b then  ∫ab f(x) dx ≥∫ab g(x) dx

10. If m ≤ f ( x ) ≤ M for a ≤ x ≤ b then m (b - a ) ≤ ∫ab f(x) dx ≤ M (b - a ) .

11. |∫ab f ( x ) dx|  ≤ ∫ab f ( x ) dx


Related Discussions:- Properties of definite integral

Maclaurin series - sequences and series, Maclaurin Series Before w...

Maclaurin Series Before working any illustrations of Taylor Series the first requirement is to address the assumption that a Taylor Series will in fact exist for a specifi

Volume., what is the volume of new ipad pro box

what is the volume of new ipad pro box

Define symmetric, Define symmetric, asymmetric and antisymmetric relations....

Define symmetric, asymmetric and antisymmetric relations.    Ans: Symmetric Relation A relation R illustrated on a set A is said to be a symmetric relation if for any x,

What is negative exponents explain, What is Negative Exponents explain? ...

What is Negative Exponents explain? Here's a problem which results in a negative exponent: 3 4 /3 7 = 3 (4-7) = 3 -3 A negative exponent means the same thing as making

Determination of the regression equation, Determination of the Regression E...

Determination of the Regression Equation The determination of the regression equation such given above is generally done by using a technique termed as "the method of least sq

Activity example of one to one correspondence learning, Devise one activity...

Devise one activity each to help the child understand 'as many as' and 'one-to-one correspondence'. Try them out on a child/children in your neighbourhood, and record your observat

Derive expressions for the mean and variance, On each day t of n days, N cu...

On each day t of n days, N customers of a supermarket were sampled and the number Xt expressing dissatisfaction was recorded. The results suggested that there were good and bad day

Arthimetic progressions, what is the ratio of sides of a right angle triang...

what is the ratio of sides of a right angle triangle which are in A.P

Pythagorean theorem, How do you find the perimeter of an irregular shape us...

How do you find the perimeter of an irregular shape using Pythagorean theorem?

Solve:, A Cleaning solution has 40% vinegar. Find the amount of vinegar in ...

A Cleaning solution has 40% vinegar. Find the amount of vinegar in 32 ounces of the solution>

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd