Properties of definite integral, Mathematics

Assignment Help:

Properties

1.  ∫baf ( x ) dx = -∫ba f ( x ) dx .  We can interchange the limits on any definite integral, all that we have to do is tack a minus sign onto the integral while we do.

2.  ∫aa f(x)dx = 0 . If the upper & lower limits are the similar then there is no work to accomplish, the integral is zero.

3.  ∫ba cf ( x ) dx = c∫ba f (x ) dx  , where c refer for any number.  Therefore, as with limits, derivatives, & indefinite integrals we can factor out a constant.

4.  ∫ba f ( x ) dx± g ( x ) dx = ∫ba f ( x ) dx± ∫ba g ( x ) dx .We can break up definite integrals across a sum or difference.

5.  ∫ba f ( x ) dx =∫ca f (x ) dx  +∫ba f (x ) dx  where c refer to any number.  This property is more significant than we might realize at first. One of the main utilizations of this property is to tell us how we can integrate function over the adjacent intervals, [a,c] and [c,b]. However note that c doesn't have to be between a & b.

6.  ∫ba f ( x ) dx =∫ba f ( t ) dt .The point of this property is to notice that as far as the function & limits are the similar the variable of integration that we utilizes in the definite integral won't affect the answer.

7. ∫ab c dx = c (b - a ) , c is refer for any number.

8.  If f ( x ) ≥ 0 for a ≤ x ≤ b then  ∫ab f(x) dx ≥ 0 .

9.  If f ( x ) ≥ g (x ) for a ≤ x ≤ b then  ∫ab f(x) dx ≥∫ab g(x) dx

10. If m ≤ f ( x ) ≤ M for a ≤ x ≤ b then m (b - a ) ≤ ∫ab f(x) dx ≤ M (b - a ) .

11. |∫ab f ( x ) dx|  ≤ ∫ab f ( x ) dx


Related Discussions:- Properties of definite integral

Mensuration, In an equilateral triangle 3 coins of radius 1cm each are kept...

In an equilateral triangle 3 coins of radius 1cm each are kept along such that they touch each other and also the side of the triangle. Determine the side and area of the triangle.

Infinite, why cant we find the value of 1 upon zero

why cant we find the value of 1 upon zero

Unit circle, Unit circle: The unit circle is one of the most valuable tool...

Unit circle: The unit circle is one of the most valuable tools to come out in trig.  Unluckily, most people don't study it as well. Below is the unit circle with just the first

Complex root - fundamental set of solutions, Example : Back into the comple...

Example : Back into the complex root section we complete the claim that y 1 (t ) = e l t cos(µt)        and      y 2 (t) = e l t sin(µt) Those were a basic set of soluti

Difererntial equation, Ask queFind the normalized differential equation whi...

Ask queFind the normalized differential equation which has {x, xex} as its fundamental setstion #Minimum 100 words accepted#

Shares and dividends, at what price a 6.25%rs 100 share be quoted when the ...

at what price a 6.25%rs 100 share be quoted when the money is worth 5%

Find k to three decimal places, The population of a city is observed as gro...

The population of a city is observed as growing exponentially according to the function P(t) = P0 e kt , where the population doubled in the first 50 years. (a) Find k to three

Number sentences, when i couulate the formula f 64 divided by 65 how do i d...

when i couulate the formula f 64 divided by 65 how do i do this

How much did kara pay in interest, Kara borrowed $3,650 for one year at an ...

Kara borrowed $3,650 for one year at an annual interest rate of 16%. How much did Kara pay in interest? To ?nd out 16% of $3,650, multiply $3,650 through the decimal equivalent

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd