Proof of the properties of vector arithmetic, Mathematics

Assignment Help:

Proof of the Properties of vector arithmetic

Proof of a(v + w) = av + aw

We will begin with the two vectors, v = (v1 , v2 ,..., vn)and w? = w1 , w2 ,..., wn) and yes we did mean for these to every have n components. The theorem works for general vectors thus we may also do the proof for general vectors.

Here now, as illustrated above this is pretty much just a "computational" proof. What that means is that we'll calculate the left side and then do some basic arithmetic on the result to illustrate that we can make the left side act like the right side. Here is the work.

a(v + w) = a {(v1, v2, ... vn) + (w1,w2,...,wn)}

                       = a (v1 + w1, v2 + w2, ... vn + wn)

                        = {a (v1+w1), a (v2+w2), .... a (vn + wn)}

                        = {av1 + aw1, av2 + aw2, ..., avn + awn}

                        = {av1, av2, ... , avn}+ {aw1, aw2, ..., awn}

                        = a ( v1, v2, ... vn) + a (w1,w2,...,wn)}

                        = av + aw


Related Discussions:- Proof of the properties of vector arithmetic

Differentiate outline function in chain rules, Differentiate following. ...

Differentiate following. Solution : It requires the product rule & each derivative in the product rule will need a chain rule application as well. T ′ ( x ) =1/1+(2x) 2

Las leyes de kepler, la expresión que permite calcular el radio medio de la...

la expresión que permite calcular el radio medio de la órbita de cada planeta es?

Examples of complex numbers, Following are some examples of complex numbers...

Following are some examples of complex numbers. 3 + 5i                                                 √6 -10i (4/5) + 1           16i                     113 The last t

Modeling with first order differential equations, We here move to one of th...

We here move to one of the major applications of differential equations both into this class and in general. Modeling is the process of writing a differential equation to explain a

Pumping lemma for context free languages, 1. Construct a grammar G such tha...

1. Construct a grammar G such that L(G) = L(M) where M is the PDA in the previous question. Then show that the word aaaabb is generated by G. 2. Prove, using the Pumping Lemma f

Mr F.D, how you divide 100 by 10 and then x by 10

how you divide 100 by 10 and then x by 10

Subspace of r containing n, Give an example of each of the following given ...

Give an example of each of the following given below . You do not require to give any justi cation. (a) A nonempty, bounded subset of Q with no in mum in Q. (b) A subspace of

Permutation, Permutation - It is an order arrangement of items whether...

Permutation - It is an order arrangement of items whether the order must be strictly observed Illustration Assume x, y and z be any of three items. Arrange these in all

Characteristics and limitations of moving average, Characteristics and Limi...

Characteristics and Limitations of moving average Characteristics of moving average 1) The more the number of periods in the moving average, the greater the smoothing

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd