Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

Find how much more space than the toy it will cover, A Solid toy in the for...

A Solid toy in the form of a hemisphere surmounted by the right circular cone of height  2cm  and  diameter  of  the  base  4  cm .If  a right  circular  cylinder circumscribes the

Example of optimization , A piece of pipe is carried down a hallway i.e 10 ...

A piece of pipe is carried down a hallway i.e 10 feet wide.  At the ending of the hallway the there is a right-angled turn & the hallway narrows down to 8 feet wide. What is the lo

Find the probability density function, 1. The lifetime T (in days) of an el...

1. The lifetime T (in days) of an electrical component has reliability function given by: R(t) = e -0.01t for time t > 0. An electrical system consists of four such components. Th

Define regression, Define regression. The main reason of curve fitting ...

Define regression. The main reason of curve fitting is to estimate one of the variables (the dependent variable) from the other (the independent variable). The procedure of est

Ratio, how can i solve it

how can i solve it

Continuous Probability Distributions, Ask questioOn average, Josh makes thr...

Ask questioOn average, Josh makes three word-processing errors per page on the first draft of his reports for work. What is the probability that on the next page he will make a) 5

What is equivalent of this temperature in degrees fahrenheit, The temperatu...

The temperature in Hillsville was 20° Celsius. What is the equivalent of this temperature in degrees Fahrenheit? This problem translates to the expression 3 {[2 - (-7 + 6)] + 4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd