Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

Earth Day Bags, #question.I headed into Target in Webster, NY for an advert...

#question.I headed into Target in Webster, NY for an advertized free Earth Day Bag in (local newspaper and on your entrance store doors) and at 10:30 a.m. on Sunday, April 22nd, th

Numerical analysis, just give me some tips to submit a good asignments

just give me some tips to submit a good asignments

Ploting of mathematical graphs, how can we represent this mathematical equa...

how can we represent this mathematical equation on a graph y=2x-1

Eulers Method, Euler's Method Up to this point practically all differe...

Euler's Method Up to this point practically all differential equations which we've been presented along with could be solved. The problem along with this is which the exceptio

Continuity, Continuity : In the last few sections we've been using the te...

Continuity : In the last few sections we've been using the term "nice enough" to describe those functions which we could evaluate limits by just evaluating the function at the po

What is perfect squares, What is Perfect Squares ? Any number that can ...

What is Perfect Squares ? Any number that can be written as an integer to the power of two is called a perfect square. For example, 4 can be written as 2 2 4 is a "perfect sq

Green''s funtion., show that the green''s function for x"=0,x(1)=0,x''(0)+x...

show that the green''s function for x"=0,x(1)=0,x''(0)+x''(1)=0 is G(t,s)=1-s

Right angle triangle, If the points for a right angle triangle are XYZ wher...

If the points for a right angle triangle are XYZ where do I mark the points?

Sketch the plot first-order integrated rate, Show that the first-order inte...

Show that the first-order integrated rate expression can be written as [A] t = [A] 0 e -n(in)t where n represents the number of elapsed halftimes. Sketch the plot of [A] 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd