Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

1 application of complex analysis in THERMODYNAMICS, Hi, this is EBADULLA ...

Hi, this is EBADULLA its about math assignment. 1 application of complex analysis used in thermodynamics. . what all uses are there in that... plz let mee know this answer.

Statistic, The mean height of eight children is 136cm. if the height of sev...

The mean height of eight children is 136cm. if the height of seven children are 143,125,133,140,120,135 and 152,find the height of eighth student.

one student is more in each row, The students of a class are made to stand...

The students of a class are made to stand in complete rows. If one student is more in each row, there would be 2 rows less, and if one student is less in every row, there would be

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Algorithm for division, ALGORITHM FOR DIVISION : If you ask a 10 or 1 1-ye...

ALGORITHM FOR DIVISION : If you ask a 10 or 1 1-year-old child to solve, say, 81 + 9, the chances are that she will correctly do it. But if you ask her to solve, say 72 + 3, t

Explain why f must be a di?erentiable function, Let f : R 3 → R be de?ned ...

Let f : R 3 → R be de?ned by:                                        f(x, y, z) = xy 2 + x 3 z 4 + y 5 z 6 a) Compute ~ ∇f(x, y, z) , and evaluate ~ ∇f(2, 1, 1) . b) Brie?y

Linear independence and dependence, It is not the first time that we've loo...

It is not the first time that we've looked this topic. We also considered linear independence and linear dependence back while we were looking at second order differential equation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd