Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

Solve the linear programming problem using simple method, Solve the followi...

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x 1 + 2X 2 Subject to the constraints:                  X 1 + X 2 ≤ 4

Profit maximization, a medical clinic performs three types of medical tests...

a medical clinic performs three types of medical tests that use the same machines. Tests A, B,and C take 15 minutes, 30 minutes and 1 hours respectively, with respective profits of

Related rates of differentiation., Related Rates : In this section we wil...

Related Rates : In this section we will discussed for application of implicit differentiation.  For these related rates problems usually it's best to just see some problems an

Product and quotient rule, Product and Quotient Rule : Firstly let's se...

Product and Quotient Rule : Firstly let's see why we have to be careful with products & quotients.  Assume that we have the two functions f ( x ) = x 3   and g ( x ) = x 6 .

Geometry help, One of two complementary angles is 80& of the other. What is...

One of two complementary angles is 80& of the other. What is the degree measure of the smaller angle?

Trigonometry, Solve the following: Line Bearings Distance a...

Solve the following: Line Bearings Distance a. N 15 E 4km b. S 10 E ? c. N 80 W ?

Multiples, The sum of the smallest and largest multiples of 8 up to 60 is?

The sum of the smallest and largest multiples of 8 up to 60 is?

MATH HELP: URGENT, the andersons are buying a new home and need to fence th...

the andersons are buying a new home and need to fence their yard. the yard is 40 ft by 80 ft. each fencing section is 8ft. how many sections will they need?how many posts will they

Direction cosines - vector, Direction Cosines This application of the ...

Direction Cosines This application of the dot product needs that we be in three dimensional (3D) space not like all the other applications we have looked at to this point.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd