Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

Inventory record, a) Complete the inventory record below for an FOQ of 100 ...

a) Complete the inventory record below for an FOQ of 100 units. b) Talk about weaknesses of MRP. List at least 3 and describe each in a sentence or two. Item: A

Equal matrices - linear algebra and matrices, I need assignment help for Eq...

I need assignment help for Equal Matrices. can you please define Equal Matrices?

100 day countdown, subtract 20and 10,and then mutiply by 5

subtract 20and 10,and then mutiply by 5

Differential equation of newton’s law of cooling , 1. A direction ?eld for...

1. A direction ?eld for a differential equation is shown. Draw, with a ruler, the graphs of the Euler approximations to the solution curve that passes through the origin. Use step

Example of multiplication, Example 1: Multiply 432 by 8. Solution: ...

Example 1: Multiply 432 by 8. Solution:        432 ×        8 --------------       3,456 In multiplying the multiplier in the units column to the multiplica

Intergration, Functional and variations.Block III, Consider the functiona...

Functional and variations.Block III, Consider the functional S[y]=?_1^2 v(x^2+y'')dx , y(1)=0,y(2)=B Show that if ?=S[y+eg]-S[y], then to second order in e, ?=1/2 e?_1^2¦?g^'

Calculus online, need help completing my online text. can provide login det...

need help completing my online text. can provide login details

Linear programming problem, I have a linear programming problem that we are...

I have a linear programming problem that we are to work out in QM for Windows and I can''t figure out how to lay it out. Are you able to help me if I send you the problem?

Geometry, what is the product of the solutions to the equation: x2+4x=-4

what is the product of the solutions to the equation: x2+4x=-4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd