Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

What is transitive relations:, R is called as a transitive relation if (a, ...

R is called as a transitive relation if (a, b) € R, (b, c) € R → (a, c) € R In other terms if a belongs to b, b belongs to c, then a belongs to c.         Transitivity be uns

Three dimensional spaces - calculus, Three Dimensional Spaces In this ...

Three Dimensional Spaces In this section we will start taking a much more detailed look at 3-D space or R 3 ).  This is a major topic for mathematics as a good portion of Calc

Sum, what is an equation for circle?..

what is an equation for circle?..

Mdm4uc, The number of hours spent studying and achievement on an exam

The number of hours spent studying and achievement on an exam

Mode, What is the median for this problem (55+75+85+100+100)

What is the median for this problem (55+75+85+100+100)

Algebra, how do i sole linear epuation

how do i sole linear epuation

Using pythagorean theorem solve z 2 = ( x + y )2 + 3502, Two people on bik...

Two people on bikes are at a distance of  350 meters.  Person A begin riding north at a rate of 5 m/sec and 7 minutes later on Person B begin riding south at 3 m/sec.  Determine th

How many years will it take him to pay off the loan, Joe took out a car loa...

Joe took out a car loan for $12,000. He paid $4,800 in interest at a rate of 8% per year. How many years will it take him to pay off the loan? Using the easy interest formula I

Coefficients of the equation, If coefficients of the equation ax 2 + bx + ...

If coefficients of the equation ax 2 + bx + c = 0, a ¹ 0 are real and roots of the equation are non-real complex and  a + c (A) 4a + c > 2b (B) 4a + c Please give t

Word or term for, An irregular perimeter to the circumference of a circle s...

An irregular perimeter to the circumference of a circle such as a protrusion

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd