Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

One step ahead, how do we figure it out here is an example 3,4,6,9,_,_,_,_...

how do we figure it out here is an example 3,4,6,9,_,_,_,_,_,. please help

Calculate the throughput and link utilization, 4. Two hosts, one on East (h...

4. Two hosts, one on East (host A) and one on the west coast (host B) of the USA are exchanging data. Suppose A is sending a large file to B. The file is split into packets of size

To calculate volume of cylinder which formula is used, Mimi is filling a te...

Mimi is filling a tennis ball can along with water. She wants to know the volume of the cylinder shaped can. Which formula will she use? The volume of a cylinder is π times the

Trigonometry identity, if x+y+z=pi=180 prove that sin^2x+sin^2y+sin^z-2sinx...

if x+y+z=pi=180 prove that sin^2x+sin^2y+sin^z-2sinx*siny*sinz=2

Fractions, If i worked 7 1/3 hours and planted 11 trees how many hours did ...

If i worked 7 1/3 hours and planted 11 trees how many hours did it take to plant each tree?

Evaluate the area of the shaded region, Using the example provided, Evaluat...

Using the example provided, Evaluate the area of the shaded region in terms of π. a. 264 - 18π b. 264 - 36π c. 264 - 12π d. 18π- 264 b. The area of the shaded r

Determine the optimal strategy, On a picnic outing, 2 two-person teams are ...

On a picnic outing, 2 two-person teams are playing hide-and-seek. There are four hiding locations (A, B, C, and D), and the two peoples of the hiding team can hideseparately in any

Objectives of addition and subtraction, Objectives After going throu...

Objectives After going through this unit, you should be able to 1. explain the processes involved ih addition and subtraction; 2. plan and execute activities that woul

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd