Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

Test of hypothesis about the population mean, Test of hypothesis about the ...

Test of hypothesis about the population mean When the population standard deviation (S) is identified then the t statistic is defined as             t = ¦(x¯ - µ)/ S x¯ ¦

Find out the volume of the solid method of disks , Find out the volume of t...

Find out the volume of the solid obtained by rotating the region bounded by y = x 2 - 4x + 5 , x = 1 , x = 4 , and the x-axis about the x-axis. Solution : The firstly thing t

Real and distinct roots, Now we start solving constant linear, coefficient ...

Now we start solving constant linear, coefficient and second order differential and homogeneous equations. Thus, let's recap how we do this from the previous section. We start alon

Maximin method -decision making under uncertainty, Decision making under un...

Decision making under uncertainty Various methods are used to make decision in circumstances whereas only the pay offs are identified and the likelihood of every state of natur

Describe the properties of inequalities, Describe the Properties of Inequal...

Describe the Properties of Inequalities ? Postulate In comparing two quantities, say a and b, there are exactly three possibilities. (1) a is less than b. (a b)

Calculus, need someone to log into my hawkes and complete homework due

need someone to log into my hawkes and complete homework due

Obtain the sum of the squares of values, This question is in the form of an...

This question is in the form of an exercise and questions designed to give you more insight into signal processing. On the Moodle site for the module there is an EXCEL file called

Can tan theeta be integrated?, Normal 0 false false false ...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd