Proof of root test - sequences and series, Mathematics

Assignment Help:

Proof of Root Test 

Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well note that this proof is very identical to the proof of the Ratio Test. Let us start off the proof here by suppose that 1 L < and we will need to illustrate that ∑an is absolutely convergent.  To do this let's first note that as L < 1 there is some number r like L < r < 1.

Now, remind that,

2166_Proof of Root Test 1.png

and because we as well as have chosen r such that  L< r there is some N like if  n ≥ N we will have,

1847_Proof of Root Test 2.png

Here now the series

1312_Proof of Root Test 3.png

is a geometric series and as 0 < r < 1 we in fact know that it is a convergent series. As well because |an < rn| n≥N  through the Comparison test the series

1540_Proof of Root Test 4.png

is convergent. Though since,

2204_Proof of Root Test 5.png

we are be familiar with that

391_Proof of Root Test 6.png

is as well convergent as the first term on the right is a finite sum of finite terms and hence finite.  Hence

525_Proof of Root Test 7.png

is absolutely convergent.

Subsequently, we need to assume that L >1 and we'll need to illustrate that ∑an is divergent. reminding that,

1145_Proof of Root Test 8.png

and as L > 1 we know that there should be some N such that if  n > N we will have,

35_Proof of Root Test 9.png

Though, if  |an| > 1 for all  n ≥ N after that we know that,

1899_Proof of Root Test 10.png

The meaning of this is like this:

1338_Proof of Root Test 11.png

Hence, by the Divergence Test ∑an is divergent.

At last, we need to assume that L= 1and show that we could get a series which has any of the three possibilities.  To do this we just require a series for each case.  We'll leave the facts of checking to you but all three of the following series have L= 1 and each one shows one of the probabilities.

2403_Proof of Root Test 12.png


Related Discussions:- Proof of root test - sequences and series

Determine how many poles are there in the stack, 1. A stack of poles has 22...

1. A stack of poles has 22 poles in the bottom row, 21 poles in the next row, and so on, with 6 poles in the top row. How many poles are there in the stack? 2. In the formula N

Direction field for the differential equation, We require to check the deri...

We require to check the derivative thus let's use v = 60. Plugging it in (2) provides the slope of the tangent line as -1.96, or negative. Thus, for all values of v > 50 we will ha

Advanced functions, writ the equation that describes the motion of a point ...

writ the equation that describes the motion of a point on the wheel that has a center of 4m off the ground, has radius of 15 cm, makes a full rotation every 10 seconds and starts a

Geometric mean-geometric progression, Geometric mean - It is a measure ...

Geometric mean - It is a measure of central tendency normally utilized to measure industrial increases rates. - It is explained as the nth root of the product of 'n' observa

digraph of r, Let R be the relation on S = {1, 3, 6, 9, 27} defined by aRb...

Let R be the relation on S = {1, 3, 6, 9, 27} defined by aRb iff a|b. (a) Write down the matrix of R. (b) Draw the digraph of R. (c) Explain whether R is reflexive, irrere

Find the constant rate of 0.01 , Two people are 50 feet separately.  One of...

Two people are 50 feet separately.  One of them begin walking north at rate so that the angle illustrated in the diagram below is changing at constant rate of 0.01 rad/min. At what

Trigonometry, important trigonometric formulas for class 10th CBSC board

important trigonometric formulas for class 10th CBSC board

Vectors, The angles between three non-zero and non coplanar vectors a,b and...

The angles between three non-zero and non coplanar vectors a,b and c are α between b and c and β between c and a and γ between a and b. The vector u and v are defined by u=(aX

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd