Proof of alternating series test, Mathematics

Assignment Help:

Proof of Alternating Series Test

With no loss of generality we can assume that the series begins at n =1. If not we could change the proof below to meet the new starting place or we could perform an index shift to obtain the series to begin at n =1 .

First, notice that because the terms of the sequence are decreasing for any two successive terms we can say,

bn - bn+1 ≥ 0

Here now, let us take a look at the even partial sums.

s2 = b1 - b2 ≥ 0

s4 = b1 - b2 + b3 - b4 = s2 + b3 - b4 ≥ s2                                              because b3 - b4 > 0

S6 = s4 + b5 - b6  ≥ s4                                                            because b5 - b6 > 0     

S2n = S2n -2 + b2n -1 - b2n  ≥ S2n -2                                                           because b2n-1 - b2n > 0

Thus, {S2n}is an increasing sequence.

 Next, we can as well write the general term as,

S2n = b1-b2 + b3 - b4 + b5 + .... - b2n-2 + b2n-1 - b2n

= b1 - (b2-b3) - (b4 - b5) + ..... - (b2n-2 - b2n-1) - b2n

Every quantity in parenthesis is positive and by assumption we be familiar with that b2n is as well positive.  Thus, this tells us that S2n< b1 for all n.

We now be familiar with that {S2n}is an increasing sequence that is bounded above and thus we know that it must as well converge.  Thus, let's assume that its limit is s or,

1578_Proof of Alternating Series Test 1.png

Subsequently, we can quickly find out the limit of the sequence of odd partial sums, {S2n+1} as follows,

1043_Proof of Alternating Series Test 2.png

Thus, we now know that both of the {S2n} and {S2n+1} are convergent sequences and they both have similar limit and so we as well know that {Sn} is a convergent sequence along with a limit of s.  This in turn tells us that ∑an is convergent.


Related Discussions:- Proof of alternating series test

Calculus, Calculus Calculus is a branch of mathematics which describes...

Calculus Calculus is a branch of mathematics which describes how one variable changes in relationship to another variable. It enables us to determine the rate of change of one

what fill amount are they searching, Brewery has 12 oz bottle filling mach...

Brewery has 12 oz bottle filling machines.  Amount poured by machine is normal distribution mean 12.39 oz  SD 0.04 oz. Company is interested in in reducing the amount of extra beer

Simplify the logical expression, Simplify the logical expression X‾ Y‾ + X‾...

Simplify the logical expression X‾ Y‾ + X‾ Z + Y Z +Y‾ Z W‾  Ans: The K-Map for the following Boolean expression is described by the following diagram. The optimized expression

Limit comparison test - sequences and series, Limit Comparison Test Ass...

Limit Comparison Test Assume that we have two series ∑a n and ∑b n with a n , b n   ≥ 0 for all n. Determine, If c is positive (i.e. c > 0 ) and is finite (i.e. c

Find out the determinant, Find out the determinant: Find out the deter...

Find out the determinant: Find out the determinant of the following 3 x 3 matrix, expanding about row 1. Solution:

Standard interpretations to derivatives, Standard interpretations to deriva...

Standard interpretations to derivatives Example   Assume that the amount of money in a bank account is specified by                                       P (t ) = 500 + 10

Shortricks, shortricks of compound interest

shortricks of compound interest

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd