Proof of alternating series test, Mathematics

Assignment Help:

Proof of Alternating Series Test

With no loss of generality we can assume that the series begins at n =1. If not we could change the proof below to meet the new starting place or we could perform an index shift to obtain the series to begin at n =1 .

First, notice that because the terms of the sequence are decreasing for any two successive terms we can say,

bn - bn+1 ≥ 0

Here now, let us take a look at the even partial sums.

s2 = b1 - b2 ≥ 0

s4 = b1 - b2 + b3 - b4 = s2 + b3 - b4 ≥ s2                                              because b3 - b4 > 0

S6 = s4 + b5 - b6  ≥ s4                                                            because b5 - b6 > 0     

S2n = S2n -2 + b2n -1 - b2n  ≥ S2n -2                                                           because b2n-1 - b2n > 0

Thus, {S2n}is an increasing sequence.

 Next, we can as well write the general term as,

S2n = b1-b2 + b3 - b4 + b5 + .... - b2n-2 + b2n-1 - b2n

= b1 - (b2-b3) - (b4 - b5) + ..... - (b2n-2 - b2n-1) - b2n

Every quantity in parenthesis is positive and by assumption we be familiar with that b2n is as well positive.  Thus, this tells us that S2n< b1 for all n.

We now be familiar with that {S2n}is an increasing sequence that is bounded above and thus we know that it must as well converge.  Thus, let's assume that its limit is s or,

1578_Proof of Alternating Series Test 1.png

Subsequently, we can quickly find out the limit of the sequence of odd partial sums, {S2n+1} as follows,

1043_Proof of Alternating Series Test 2.png

Thus, we now know that both of the {S2n} and {S2n+1} are convergent sequences and they both have similar limit and so we as well know that {Sn} is a convergent sequence along with a limit of s.  This in turn tells us that ∑an is convergent.


Related Discussions:- Proof of alternating series test

Geometry, How do you solve (17+w)^2 + w^2 = (25+w)^2

How do you solve (17+w)^2 + w^2 = (25+w)^2

Long distance calls cost x cent how much 5-minute call cost, A long distanc...

A long distance calls costs x cents for the first minute and y cents for every additional minute. How much would a 5-minute call cost? The cost of the call is x cents plus y ti

#titl., class 10 Q.trigonometric formula of 1 term

class 10 Q.trigonometric formula of 1 term

Explain angle pairs, Explain angle pairs ? Adjacent angle pairs Two an...

Explain angle pairs ? Adjacent angle pairs Two angles are adjacent if they: 1. Have the same vertex. 2. Share a common side. 3. Have no interior points in common. Definit

Fractions, a boy is six months old his sister was given birth to three mont...

a boy is six months old his sister was given birth to three month after him. if their cousin is 0.33years old, arrange their ages in ascending order

Give an equations with the variable on both sides, Give an Equations with t...

Give an Equations with the variable on both sides ? Many equations that you encounter will have variables on both sides. Some of these equations will even contain grouping sy

System of differential equations for the population, Write down the system ...

Write down the system of differential equations for the population of both predators and prey by using the assumptions above. Solution We will start off through letting that

Describe the laws of sines, Q. Describe the Laws of Sines? Ans. Up...

Q. Describe the Laws of Sines? Ans. Up to now we have dealt exclusively with right triangles.  The Law of Sines and the Law of Cosines are used to solve  oblique triangles

Minimum and maximum values, Minimum and Maximum Values : Several applicati...

Minimum and Maximum Values : Several applications in this chapter will revolve around minimum & maximum values of a function.  Whereas we can all visualize the minimum & maximum v

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd