Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Proof of: if f(x) > g(x) for a < x < b then a∫b f(x) dx > g(x).
Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,
a∫b f(x) - g(x) dx > 0
We know as well from Property 4,
a∫b f(x) - g(x) dx = a∫b f(x) dx - a∫b g(x) dx
Therefore, we then get,
a∫b f(x) dx - a∫b g(x) dx > 0
a∫b f(x) dx > a∫b g(x) dx
Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ a∫b f(x) dx ≤ M (b - a).
Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,
a∫b m dx < a∫b f(x) dx ≤ a∫b M dx
So by Property 7 on the left and right integral to find,
m(b -a) < a∫b f(x) dx ≤ M (b -a)
IN THIS WE HAVE TO ADD THE PROBABILITY of 3 and 5 occuring separtely and subtract prob. of 3 and 5 occuring together therefore p=(166+100-33)/500=233/500=0.466
How does your answer to this question compare with mine, which follows? i) To begin with, 1 laid the beads out in a row for counting, so that I wouldn't leave any out or count a
a hollow cone is cut by a plane parallel to the base and the upper portion is removed. if the volume of the frustum obtained is 26/27 of volume of the cone. find at what height abo
Question 1. Use cylindrical coordinates to nd the mass of the solid of density e z which lies in the closed region Question 2. The density of a hemisphere of radius a (y
Solve 2x^2 + 5x + 36
Describe Subtracting Negative Fractions? Subtracting two fractions, whether one is positive and one is negative, or whether they are both negative, is almost the same process a
i want to find the solution for exercises
How to get the answer
Noel rode 3x miles on his bike and Jamie rode 5x miles on hers. In terms of x, what is the total number of miles they rode? The terms 3x and 5x are such as terms since they hav
Find the amount of sheet metal need to form a conical funnel of base radius 30cm with a vertical height of 50cm, allowing for 0.5cm overlap. Find the total surface area?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd