Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Proof of: if f(x) > g(x) for a < x < b then a∫b f(x) dx > g(x).
Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,
a∫b f(x) - g(x) dx > 0
We know as well from Property 4,
a∫b f(x) - g(x) dx = a∫b f(x) dx - a∫b g(x) dx
Therefore, we then get,
a∫b f(x) dx - a∫b g(x) dx > 0
a∫b f(x) dx > a∫b g(x) dx
Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ a∫b f(x) dx ≤ M (b - a).
Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,
a∫b m dx < a∫b f(x) dx ≤ a∫b M dx
So by Property 7 on the left and right integral to find,
m(b -a) < a∫b f(x) dx ≤ M (b -a)
what is the importance of solid mensuration?
what are the characteristic of digital ic
Case 1: Suppose we have two terms 8ab and 4ab. On dividing the first by the second we have 8ab/4ab = 2 or 4ab/8ab = (1/2) depending on whether we consider either 8ab or 4ab as the
methods of interpolation
the median of a continuous frequency distribution is 21.if each observation is increased by 5. find the new median
The subsequent force that we want to consider is damping. This force may or may not be there for any specified problem. Dampers work to counteract any movement. There are some w
Which number falls among 5.56 and 5.81? If you add a zero to the end of 5.6 to get 5.60, it is simpler to see that 5.56
There is a staircase as shown in figure connecting points A and B. Measurements of steps are marked in the figure. Find the straight distance between A and B. (Ans:10) A ns
do we calculate midpoints from classes or from class boundaries
(x+3)>3
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd