Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Proof of: if f(x) > g(x) for a < x < b then a∫b f(x) dx > g(x).
Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,
a∫b f(x) - g(x) dx > 0
We know as well from Property 4,
a∫b f(x) - g(x) dx = a∫b f(x) dx - a∫b g(x) dx
Therefore, we then get,
a∫b f(x) dx - a∫b g(x) dx > 0
a∫b f(x) dx > a∫b g(x) dx
Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ a∫b f(x) dx ≤ M (b - a).
Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,
a∫b m dx < a∫b f(x) dx ≤ a∫b M dx
So by Property 7 on the left and right integral to find,
m(b -a) < a∫b f(x) dx ≤ M (b -a)
In figure, XP and XQ are tangents from X to the circle with centre O. R is a point on the circle. Prove that XA+AR=XB+BR Ans: Since the length of tangents from externa
square root of 78269
Sin3x ? Solution) THE FORMULA IS RIGHT ,SO sin3x=3sinx-4sin 3 x
triangular with base AB = 48cm and height CH=16cm is inscribed a rectangle MNPQ in which MN: MQ = 9:5 Find MN and MQ
1+2+3+.....+n=1/2n(n+1)
tutors
how to convert double integral into polar coordinates and change the limits of integration
10 statements must be shown to be logically equivalent to the Statement the nxn matrix is invertible.
Three Dimensional Spaces In this section we will start taking a much more detailed look at 3-D space or R 3 ). This is a major topic for mathematics as a good portion of Calc
Determine equation of the tangent line to f (x) = 4x - 8 √x at x = 16 . Solution : We already know that the equation of a tangent line is specified by,
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd