Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Proof of: if f(x) > g(x) for a < x < b then a∫b f(x) dx > g(x).
Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,
a∫b f(x) - g(x) dx > 0
We know as well from Property 4,
a∫b f(x) - g(x) dx = a∫b f(x) dx - a∫b g(x) dx
Therefore, we then get,
a∫b f(x) dx - a∫b g(x) dx > 0
a∫b f(x) dx > a∫b g(x) dx
Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ a∫b f(x) dx ≤ M (b - a).
Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,
a∫b m dx < a∫b f(x) dx ≤ a∫b M dx
So by Property 7 on the left and right integral to find,
m(b -a) < a∫b f(x) dx ≤ M (b -a)
AB,BC,CD ARE THREE CONSECUTIE SIDES OF REGULAR POLYGON.IF ANGLE BAC IS 18 DEGREE, FIND EXTERIOR ANGLES AND NUMBER OF SIDES ?
If depreciation/amortisation is done properly, impairment adjustments will not arise. Required: Do you agree with the above statement? Critically and fully explain your
Consider a person's decision problem in trying to decide how many children to have. Although she cares about children and would like to have as many as possible, she knows that chi
Which of the following is the most crucial aspect of learning multiplication? i) Multiplication facts ii) Recall of tables and their recitation iii) Understanding "how man
All differential equations will doesn't have solutions thus it's useful to identify ahead of time if there is a solution or not. Why waste our time trying to get something that doe
1. a) Given a digraph G = (V,E), prove that if we add a constant k to the length of every arc coming out from the root node r, the shortest path tree remains the same. Do this by
what is Fibonacci Sequence? The most famous sequence in mathematical history is called the Fibonacci sequence, discovered by the 12th-century mathematician Leonardo Fibonacci o
what is derivative
If α & ß are the zeroes of the polynomial 2x 2 - 4x + 5, then find the value of a.α 2 + ß 2 b. 1/ α + 1/ ß c. (α - ß) 2 d. 1/α 2 + 1/ß 2 e. α 3 + ß 3 (Ans:-1, 4/5 ,-6,
Proof of: if f(x) > g(x) for a x b then a ∫ b f(x) dx > g(x). Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Prop
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd