Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Proof of: if f(x) > g(x) for a < x < b then a∫b f(x) dx > g(x).
Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Property 8 proved as above we know that,
a∫b f(x) - g(x) dx > 0
We know as well from Property 4,
a∫b f(x) - g(x) dx = a∫b f(x) dx - a∫b g(x) dx
Therefore, we then get,
a∫b f(x) dx - a∫b g(x) dx > 0
a∫b f(x) dx > a∫b g(x) dx
Proof of: If m ≤ f(x) ≤ M for a ≤ x ≤ b then m (b - a)≤ a∫b f(x) dx ≤ M (b - a).
Provide m ≤ f(x) ≤ M we can utilize Property 9 on each inequality to write,
a∫b m dx < a∫b f(x) dx ≤ a∫b M dx
So by Property 7 on the left and right integral to find,
m(b -a) < a∫b f(x) dx ≤ M (b -a)
4 accounting majors, 2 economics majors and 3 marketing majors have an interview for5 different positions with a large company. Find the number of dfferent ways that 5 of these c
solutions for the equation a-b=5
Jess had a book with 100 pages to read she only read 10 how many pages does she have to read?
the (cube square root of 2)^1/2)^3
Velocity and Acceleration - Three Dimensional Space In this part we need to take a look at the velocity and acceleration of a moving object. From Calculus I we are famili
Evaluate following indefinite integrals. (a) ∫ 5t 3 -10t -6 + 4 dt (b) ∫ dy Solution (a) ∫ 5t 3 -10t -6 + 4 dt There's not whole lot to do here other than u
Go back to the complex numbers code in Figures 50 and 51 of your notes. Add code fragments to handle the following: 1. A function for adding two complex numbers given in algeb
how to use a micrometer
how to find x,y and z in parallelograms,rhombus etc.
(x*1)+(x*7) =
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd