Programming, Electrical Engineering

Assignment Help:

ELEC 132

COURSEWORK – ADC

This work will be assessed based on program demonstration (during lab sessions) and design. You will also have to submit your c-source codes as word or pdf files through SCOLAR sub-system.
This piece of work contributes 20% towards your total mark.
The final opportunity to demonstrate your program operation is Thursday, March 21.

Introduction

The Digital-to-Analogue Converter (DAC) can be used to perform an Analogue-to-Digital Conversion (ADC) with the aid of a comparator, as explained in Lab 6.


Task1. ADC conversion using RAMP method and P1 output (6 marks).

1.1. Write and test a program which produces an analogue to digital conversion using the RAMP method and outputs the conversion value to the LEDs.
(1 marks)

1.2. Modify the program output to P1 in a way that the LEDs will display the rounded percentage of the full scale output. Since there are 8 LEDs each one represents 12.5%. However, since we want the rounded percentage the LED on the LSB should be illuminated if the voltage is above 6.25% (312mV) and the next LED should be illuminated if the voltage is above 18.75% (937mV) etc…
(2 marks)

1.3. Further modify the program so the output to P1 will include a flashing LED if the percentage is less to illuminate this LED. For example, if the voltage is less than 6.25% of full scale (312mV), LSB will be flushing and the frequency of flashing will increase with increasing the voltage . The next bit (P1.1) will start to flash when the voltage is 12.5% with increasing frequency until fully lit at 18.75%, etc.

(3 marks)


Task 2. Successive Approximation ADC ( 5 marks)

The Ramp method of ADC is simple but can take a long time to complete the conversion. Unlike the RAMP method the successive approximation technique has a fixed conversion time whatever the level of the analogue input. See Lab 6 for details.

?


Write a program to produce analogue to digital conversion using the successive approximation method and output the voltage value into serial port with the accuracy of 1 mV. Try to use bit-wise operators for realising successive approximation.

Task 3. Digital Volt Meter (DVM) (5 marks)

Use any ADC method to simulate a Digital Volt Meter with output to LCD. The upper line of the display should have an appropriate message like “Voltage (mv)” and the bottom line should displays the correct voltage (in millivolts) with the accuracy of 1 mV.

Task 4. Integrated output (4 marks)

Finally, integrate your previous programs to produce all three types of output: to port 1, to serial port and to LCD. The output to serial port should be with the period of 100 ms. Your final program design has to be modulus, therefore, the use of functions will be important.
1

Related Discussions:- Programming

Find maximum probable percentage error in the measurement, Q. A current of ...

Q. A current of 65 A is measured with an analog ammeter having a probable error of ± 0.5% of full scale of 100 A. Find the maximum probable percentage error in the measurement.

Explain balanced wye-connected load, Balanced Wye-Connected Load Let us...

Balanced Wye-Connected Load Let us consider a three-phase, four-wire 208-V supply system connected to a balanced wye connected load with an impedance of 10 20° , as shown in F

Evaluate the thickness of the shell plate, A cylindrical shell with flat en...

A cylindrical shell with flat ends is of 1.5 m Internal diameter and 4 m length. It is subjected to an internal pressure of 300 N/cm 2 . The principal stress is not to exceed 15 K

What is balanced budget, Q. What is Balanced Budget? Balanced Budget: A...

Q. What is Balanced Budget? Balanced Budget: An annual budget (like for a government) in that revenues perfectly offset expenditures, so that there is neither a deficit nor a s

Discuss the dword assembler directive, Discuss the DWORD assembler dire...

Discuss the DWORD assembler directive with example. DWORD: This defines word type variable. The described variable may have one or more initial values into the dire

Describing the steady state effect , Select the response describing the ste...

Select the response describing the steady state effect of increasing the air gap for otherwise identical devices, one operating with constant DC voltage excitation and one with con

Static v- i characteristics - power semiconductor devices, V- I Characteris...

V- I Characteristics The operation of the  diac can be explained by imagining it as two diodes connected  in series. When  applied voltage in either polarity is small ( less t

Determine lower and upper cut-off frequency, Q. In an amplifier, the maximu...

Q. In an amplifier, the maximum voltage gain is 1500 and occurs at 1kHz. It falls to 1060.5 at 20kHz and at 20Hz. Determine (i) lower cut-off frequency (ii) upper cut-o

Digital electronics, Design a logic circuit when to provide an output when ...

Design a logic circuit when to provide an output when any two or three of four switches are closed.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd