Programming, Electrical Engineering

Assignment Help:

ELEC 132

COURSEWORK – ADC

This work will be assessed based on program demonstration (during lab sessions) and design. You will also have to submit your c-source codes as word or pdf files through SCOLAR sub-system.
This piece of work contributes 20% towards your total mark.
The final opportunity to demonstrate your program operation is Thursday, March 21.

Introduction

The Digital-to-Analogue Converter (DAC) can be used to perform an Analogue-to-Digital Conversion (ADC) with the aid of a comparator, as explained in Lab 6.


Task1. ADC conversion using RAMP method and P1 output (6 marks).

1.1. Write and test a program which produces an analogue to digital conversion using the RAMP method and outputs the conversion value to the LEDs.
(1 marks)

1.2. Modify the program output to P1 in a way that the LEDs will display the rounded percentage of the full scale output. Since there are 8 LEDs each one represents 12.5%. However, since we want the rounded percentage the LED on the LSB should be illuminated if the voltage is above 6.25% (312mV) and the next LED should be illuminated if the voltage is above 18.75% (937mV) etc…
(2 marks)

1.3. Further modify the program so the output to P1 will include a flashing LED if the percentage is less to illuminate this LED. For example, if the voltage is less than 6.25% of full scale (312mV), LSB will be flushing and the frequency of flashing will increase with increasing the voltage . The next bit (P1.1) will start to flash when the voltage is 12.5% with increasing frequency until fully lit at 18.75%, etc.

(3 marks)


Task 2. Successive Approximation ADC ( 5 marks)

The Ramp method of ADC is simple but can take a long time to complete the conversion. Unlike the RAMP method the successive approximation technique has a fixed conversion time whatever the level of the analogue input. See Lab 6 for details.

?


Write a program to produce analogue to digital conversion using the successive approximation method and output the voltage value into serial port with the accuracy of 1 mV. Try to use bit-wise operators for realising successive approximation.

Task 3. Digital Volt Meter (DVM) (5 marks)

Use any ADC method to simulate a Digital Volt Meter with output to LCD. The upper line of the display should have an appropriate message like “Voltage (mv)” and the bottom line should displays the correct voltage (in millivolts) with the accuracy of 1 mV.

Task 4. Integrated output (4 marks)

Finally, integrate your previous programs to produce all three types of output: to port 1, to serial port and to LCD. The output to serial port should be with the period of 100 ms. Your final program design has to be modulus, therefore, the use of functions will be important.
1

Related Discussions:- Programming

Construction and operation of jet, Construction and operation of jet: ...

Construction and operation of jet: jet is a three terminal device one terminal capable of controlling the current between the other two. Basic construction of an n chann

Electric circuits, How to design a single phase distribution circuit from a...

How to design a single phase distribution circuit from a supply point to a load?

Determine the value of capacitance to give resonance, Determine the value o...

Determine the value of capacitance to give resonance: A circuit shown in Figure having a resistance of 5 Ω, an inductance of 0.4 H and a variable capacitance in series is conn

Determine the induced voltage at full load, A 100-kW, 250-V shunt generator...

A 100-kW, 250-V shunt generator has an armature-circuit resistance of 0.05  and a field- circuit resistance of 60 . With the generator operating at rated voltage, determine the i

#complex frequency.., i cant imagine of something called complex frequency....

i cant imagine of something called complex frequency...i find it important for laplace transformation,but i am lacking the physical explanation,please explain this to me

Amplifiers with feedback, Q. Amplifiers with Feedback? Almost all pract...

Q. Amplifiers with Feedback? Almost all practical amplifier circuits include some form of negative feedback. The advantages gained with feedback may include the following: •

Input offset voltage of operational amplifier, Q. Input offset voltage of o...

Q. Input offset voltage of operational amplifier? When both inputs are tied to ground, i.e., both differential-mode and common-mode inputs are zero, the output should be zero.

What do you mean by resistance, Q. What do you mean by Resistance? An i...

Q. What do you mean by Resistance? An ideal resistor is a circuit element with the property that the current through it is linearly proportional to the potential difference acr

Carrier modulation by digital signals, Q. Carrier Modulation by Digital Sig...

Q. Carrier Modulation by Digital Signals? Digitally modulated signals with low-pass spectral characteristics can be transmitted directly through baseband channels (having low-p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd