Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

DAA, what do we use asymptotic notation in study of algorithm?Describe vari...

what do we use asymptotic notation in study of algorithm?Describe various asymptotic notation and give their significance.

Full binary trees, Full Binary Trees: A binary tree of height h that had 2...

Full Binary Trees: A binary tree of height h that had 2h -1 elements is called a Full Binary Tree. Complete Binary Trees: A binary tree whereby if the height is d, and all of

Explain graph traversal, Graph Traversal In many problems we wish to in...

Graph Traversal In many problems we wish to investigate all the vertices in a graph in some systematic order. In graph we often do not have any single vertex singled out as spe

Program to implementing stack using linked lists, include include i...

include include include /* Definition of structure node */ typedef struct node { int data; struct node *next; } ; /* Definition of push function */

Algorithm, Describe different methods of developing algorithms with example...

Describe different methods of developing algorithms with examples.

Define different types of sparse matrix, Q1. Define a sparse matrix. Explai...

Q1. Define a sparse matrix. Explain different types of sparse matrices? Evaluate the method to calculate address of any element a jk of a matrix stored in memory. Q2. A linear

Define queue, A queue is a, FIFO (First In First Out) list.

A queue is a, FIFO (First In First Out) list.

#, write an algorithm to search a particular node in linked list which retu...

write an algorithm to search a particular node in linked list which returns " FOUND" or "NOT FOUND" as outcome.

Booth algorithm, what is boot algorithm and some example

what is boot algorithm and some example

STACK, 5. Implement a stack (write pseudo-code for STACK-EMPTY, PUSH, and P...

5. Implement a stack (write pseudo-code for STACK-EMPTY, PUSH, and POP) using a singly linked list L. The operations PUSH and POP should still take O(1) time.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd