Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

Design a framework of a genetic algorithm, You have to design a framework o...

You have to design a framework of a Genetic Algorithm (GA) with basic functionality. The basic functionality includes representation, recombination operators, tness function and se

Define minimum spanning tree, Define Minimum Spanning Tree A minimum sp...

Define Minimum Spanning Tree A minimum spanning tree of a weighted linked graph is its spanning tree of the smallest weight, where the weight of a tree is explained as the sum

Algorithm, Example of worse case of time

Example of worse case of time

State the ways to construct container taxonomy, State the ways to construct...

State the ways to construct container taxonomy There are several ways that we could construct our container taxonomy from here; one way that works well is to make a fundamental

Algorithm for dfs, Step 1: Choose a vertex in the graph and make it the sou...

Step 1: Choose a vertex in the graph and make it the source vertex & mark it visited. Step 2: Determine a vertex which is adjacent to the source vertex and begun a new search if

Array, extra key inserted at end of array is called

extra key inserted at end of array is called

Representation of arrays, REPRESENTATION OF ARRAYS This is not uncommon...

REPRESENTATION OF ARRAYS This is not uncommon to determine a large number of programs which procedure the elements of an array in sequence. However, does it mean that the eleme

Type of qualitative method, Type of Qualitative Method: Different  qua...

Type of Qualitative Method: Different  qualitative methods are suitable for different  types of study. Quite often we can  combine  qualitative and quantitative  methods. Many

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd