Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

Depth first traversal, A depth-first traversal of a tree visits a nodefirst...

A depth-first traversal of a tree visits a nodefirst and then recursively visits the subtrees of that node. Similarly, depth-first traversal of a graph visits a vertex and then rec

Determine the term - loops, Loops There are 3 common ways of performin...

Loops There are 3 common ways of performing a looping function: for ... to ... next, while ... endwhile and repeat ... until The below example input 100 numbers and find

Rooted tree, It does not have any cycles (circuits, or closed paths), which...

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be co

Simulation of queues, Simulation of queues: Simulation is the process of f...

Simulation of queues: Simulation is the process of forming an abstract model of a real world situation in order to understand the effect of modifications and the effect of introdu

Breadth-first search , 1. Apply the variant Breadth-First Search algorithm ...

1. Apply the variant Breadth-First Search algorithm as shown in Figure 2 to the attached graph. This variant is used for computing the shortest distance to each vertex from the sta

Assignment, How do I submit a three page assignment

How do I submit a three page assignment

Logic circuits, the voltage wave forms are applied at the inputs of an EX-O...

the voltage wave forms are applied at the inputs of an EX-OR gate. determine the output wave form

Graph with n vertices will absolutely have a parallel edge, A graph with n ...

A graph with n vertices will absolutely have a parallel edge or self loop if the total number of edges is greater than n-1

How conquer technique can be applied to binary trees, How divide and conque...

How divide and conquer technique can be applied to binary trees?  As the binary tree definition itself separates a binary tree into two smaller structures of the similar type,

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd