Program to implementing stack using linked lists, Data Structure & Algorithms

Assignment Help:

include

include

include

/* Definition of structure node */

typedef struct node

{

int data;

struct node *next;

} ;

/* Definition of push function */

void push(node **tos,int item)

{

node *temp;

temp=(node*)malloc(sizeof(node));                             /* Dynamically create new node */

if(temp==NULL)                                                   /* If enough amount of memory is */

{                                                                            /* not available, the function malloc will */

 printf("\n Error: Memory Space is not sufficient ");         /* return NULL to temp */ getch();

return;

}

else                                                     /* otherwise*/

{

temp->data=item;  /* put item into the data portion of node*/

temp->next=*tos;                       /*Add this node at the front of the stack */

*tos=temp;                                  /* managed through linked list*/

}

}                                                             /*end of function push*/

/* Definition of pop function */

int pop(node **tos)

{

node *temp; temp=*tos; int item;

if(*tos==NULL)

return(NULL);

else

{

*tos=(*tos)->next;                             /* To pop an element from stack*/

item=temp->data;                              /* Eliminate the front node of the */ free(temp);                                                                     /* stack managed through L.L*/

return (item);

}

}  /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{

node *temp=tos;

if(temp==NULL)                     /* verify whether the stack is empty*/

{

printf("\n Stack empty");

return;

}

else

{

while(temp!=NULL)

{

printf("\n%d",temp->data);   /* display all of the values of the stack*/

temp=temp->next;                /* from the front node to last node*/

}

}

}                                                               /*end of function display*/

/* Definition of main function */

void main()

{

int item, ch;

char choice='y'; node *p=NULL; do

{

clrscr();

printf("\t\t\t\t*****MENU*****");

printf("\n\t\t\t1. To PUSH an element");

printf("\n\t\t\t2. To POP an element");

printf("\n\t\t\t3. To DISPLAY the elements of stack");

printf("\n\t\t\t4. Exit");

printf("\n\n\n\t\t\t Enter your choice:-");

scanf("%d",&ch);

switch(ch)

{

case 1:

printf("\n Enter an element that you need to push ");

scanf("%d",&item); push(&p,item); break;

case 2:

item=pop(&p);

if(item!=NULL);

printf("\n Detected item is%d",item);

break;

case 3:

printf("\nThe elements of stack are");

display(p);

break;

case 4:

exit(0);

}           /*switch closed */

printf("\n\n\t\t Do you need to run it again y/n");

scanf("%c",&choice);

while(choice=='y');

}

/*end of function main*/

Likewise, as we did in the implementation of stack through arrays, to know the working of this program, we executed it thrice & pushed 3 elements (10, 20, 30). After that we call the function display in the next run to make out the elements in the stack.

At first, we defined a structure called node. Each of nodes contains two portions, data & a pointer which keeps the address of the next node into the list. The Push function will add a node at the front of the linked list, while pop function will delete the node from the front of the linked list. There is no requirement to declare the size of the stack in advance as we have done in the program where in we implemented the stack by using arrays as we create nodes as well as delete them dynamically. The function display will print elements of the stack.


Related Discussions:- Program to implementing stack using linked lists

Explain about the doubly linked list with neat diagram, Problem 1. Expl...

Problem 1. Explain about the doubly linked list with neat diagram. Diagram Explaining doubly linked list 2. Explain what are the criteria to be used in evaluatin

Calculation of time complexity, Example: Assume the following of code: ...

Example: Assume the following of code: x = 4y + 3 z = z + 1 p = 1 As we have been seen, x, y, z and p are all scalar variables & the running time is constant irrespective

Interest, I =PR/12 Numbers of years .Interest rate up to 1yrs ...

I =PR/12 Numbers of years .Interest rate up to 1yrs . 5.50 up to 5yrs . 6.50 More than 5 yrs . 6.75 design an algorithm based on the above information

Best case, for i=1 to n if a[i}>7 for j=2 to n a[j]=a{j}+j for n=2 to n a...

for i=1 to n if a[i}>7 for j=2 to n a[j]=a{j}+j for n=2 to n a[k]=a[j]+i else if a[1]>4 && a[1] for 2 to a[1] a[j]= a{j]+5 else for 2to n a[j]=a[j]+i ..

Queue, algorithm for insertion in a queue using pointers

algorithm for insertion in a queue using pointers

Quick sort method, Q. Explain quick sort? Sort the given array using quick ...

Q. Explain quick sort? Sort the given array using quick sort method. 24 56 47 35 10 90 82 31

Explain the interfaces in ruby, Explain the Interfaces in Ruby Recall...

Explain the Interfaces in Ruby Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot be instantiated. Even though Ruby i

Files structures, The structures of files vary from operating system to ope...

The structures of files vary from operating system to operating system. In this unit, we will discuss the fundamentals of file structures with the generic file organisations. A

Avl trees, An AVL tree is a binary search tree that has the given propertie...

An AVL tree is a binary search tree that has the given properties: The sub-tree of each of the node differs in height through at most one. Each sub tree will be an AVL tre

Types of tree ?, Binary: Each node has one, zero, or two children. This ...

Binary: Each node has one, zero, or two children. This assertion creates many tree operations efficient and simple. Binary Search : A binary tree where each and every left

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd