Program to implement procedures or functions, Computer Graphics

Assignment Help:

The goal of this assignment is to implement procedures/functions using x86 assembly. In addition to implementing procedures/functions, this assignment requires to pass arguments using the stack. Another important goal is to practice using the logic operations to do bitwise manipulation.

PART A

Implement a procedure that mimics a logic unit. The logic unit has one input, one output and a set of control flags. The input size is 32 bits (4 bytes). The output size is 8 bits (1 byte) and there are 32 bits of control signals. See block diagram:

The output depends on the value of the control signals. Your job is to implement the functionality of this unit as follows:

The input is a double word. The bytes are numbered as follows:

Depending on the control signals, the output is determined as indicated in the following table:
Control Signals Output
XXXX XXX0 XXXX XXX0 XXXX XXX0 XXXX XXX1 BYTE 1
XXXX XXX0 XXXX XXX0 XXXX XXX1 XXXX XXX0 BYTE 2
XXXX XXX0 XXXX XXX1 XXXX XXX0 XXXX XXX0 BYTE 3
XXXX XXX1 XXXX XXX0 XXXX XXX0 XXXX XXX0 BYTE 4
ANY OTHER SEE BELOW

*Note: X means 0 or 1. Output for ANY OTHER control signals: Concatenate the two highest order bits of each of the input bytes to form the output byte.

The input, control signals and output are parameters to the procedure you will be implementing. You need to read the parameters from the stack. You are NOT allowed to use the parameter variable names or create new variables in your procedure.

PART B

Implement a procedure that manipulates bits in a double word input by calling four different functions. Each function will manipulate one of the bytes in the input and generate one of the output bytes. Each function takes a 32 bit input (4 bytes) and returns a 32 bit output. Within the procedure you have to call four functions to perform different bit operations on the input and generate the output. The functions to implement are the following:

MIRROR_BYTE(input) -- Mirrors value of Byte 4 (leftmost).

Example: IF Byte 4 is 1011 0100 THEN return 0010 1101

SWAP_NIBBLES(input) -- Return interchanged nibbles of input's Byte 3.

Example IF Byte 3 is 1111 0000 THEN Return 0000 1111

INVERT_BITS(input) -- Flip the bits at positions 7, 5, 3, 1 of Byte 2. Leave the rest of the bits unchanged.

Example: IF Byte 2 is 0000 0000 THEN return 1010 1010.
Example: IF Byte 2 is 1111 1111 THEN return 0101 0101.

POWER_TWO(input) -- If the number in Byte 1 is a power of 2, return 1. Otherwise return 0.

Example: IF Byte 1 is 0110 0111 THEN return 0000 0000.
Example: IF Byte 1 is 0100 0000 THEN return 0000 0001.

You have to call the four functions from inside your procedure and pass the input parameter to each function using the stack. Return the result of each function using the return register EAX. The final output of your procedure is 4 bytes. Store the result of each function in the corresponding byte of the procedure's final output, e.g. INVERT_BITS result goes into Byte 2 of the output (since it manipulates Byte 2 of the input).


Related Discussions:- Program to implement procedures or functions

Is cad only helpful for design drawings, Question: Is CAD only helpful for ...

Question: Is CAD only helpful for design drawings? No. When true-scale, structurally valid drawings are the purpose for CAD's existence; it utilizes is as diverse as imagination

Scaling, Scaling, shear, reflection and Viewing coordinates 1) Scaling,...

Scaling, shear, reflection and Viewing coordinates 1) Scaling, shear and reflection operations have natural extensions to 3D.    2)  Viewing coordinates are the coordinates

Lossless audio formats, Lossless Audio Formats: Lossless audio formats as ...

Lossless Audio Formats: Lossless audio formats as TTA and FLAC give a compression ratio of around 2:1, sometimes extra. During exchange, for their lower compression ratio, such co

Important points about the diffuse reflection, Important Points About the D...

Important Points About the Diffuse Reflection An extremely rough surface appears uniformly bright from each viewing direction Q the intensity of reflected light is identical i

Briefly describe the variants of the interaction model, Question: a) Th...

Question: a) The implications of transparency are a major influence on the design of system software. There are eight forms of transparency. Name and give a small description o

Midpoint circle generation algorithm, Midpoint circle generation algorithm ...

Midpoint circle generation algorithm This makes use of a circle function. Based on this circle function, a decision parameter is created which is used to decide successive pixe

Arguments made in favour of analog sound, Arguments made in favour of Analo...

Arguments made in favour of Analog Sound Shape of the waveforms: from digital signals sound reconstructed which is claimed to be harsher and unnatural compared to analog si

Education - applications for computer animation, Education - applications f...

Education - applications for computer animation Currently, studies of subjects as Art, Physics, Maths, Chemistry, Biology, Engineering, Medicine, and Technology are fairly simp

Production of animation , Historical and traditional methods for productio...

Historical and traditional methods for production of animation                                              Definition: Computer animation is a time depends phenome

Key frame systems - computer animation, Key Frame Systems - computer animat...

Key Frame Systems - computer animation This method is for low-level motion control. In fact these systems comprise languages that are designed simply to produce the in-between

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd