Problem type-aspects of scheduling , Mechanical Engineering

Assignment Help:

Problem Type

Aforementioned illustration relates to the class of non-cyclic scheduling problems characterized via the subsequent features.

(a) The Flexible Manufacturing System consists of M stations (workplaces, machines) all of that can process at mainly one operation at a time,

(b) The inventory that may change at some time contains N jobs along with termed earliest possible beginning times and due dates,

(c) A job is a sequence of operations along with precedence constraints that is most operations can only be begun if one or some preceding operations have been finished.

                            Table no.2 (b): Due Dates Distributions for Situation E-H

Situation A : Case 2, 30% late jobs under the FIFO scheduling rule

Demanded Throuhput Time       %          of

Parts

 

240                            5

 

480                            5

 

720                            5

 

960                            35

 

1200                          50

 

Average Throughput Time: 1008 min

 

Demanded/achieved flow factor: 1.20

 

Situation A : Case 2, 50% late jobs under the FIFO scheduling rule

Demanded Throughput Time     %          of

Parts

 

240                            5

 

480                            10

 

720                            35

 

960                            27

 

1200                          23

 

Average Throughput Time: 847 min

 

Demanded/achieved flow factor: 1.00

 

Situation A : Case 2, 70% late jobs under the FIFO scheduling rule

Demanded Throuhput Time       %          of

Parts

 

240                            19

 

480                            25

 

720                            31

 

960                            15

 

1200                          10

 

Average Throughput Time: 653 min

 

Demanded/achieved flow factor: 0.78

 

Situation A : Case 2, 85% late jobs under the FIFO scheduling rule

Demanded Throuhput Time       %          of

Parts

 

240                            30

 

480                            45

 

720                            15

 

960                            5

 

1200                          5

 

Average Throughput Time: 504 min

 

Demanded/achieved flow factor: 0.60

 

(d) For all operation, this is identify that on which stations (one or more) this can be represented and how long this acquires (containing transportation times); these durations  are  supposed  to  be  independent of  the  scheduling deterministic and policy  ,

(e) Operations which have been begun but cannot be interrupted (non-preemptive scheduling), and

(f) The idle times among the operations are not limited, neither are the buffers opposite the stations or at the output.

Consequently the major restriction is the capability of the stations. Another limitation is assumed to be of secondary significance. They may be shown via the earliest possible starting times of the operations or contained in the operation times, for instants: via adding a constant average transportation delay. Obviously, the transportation system can be integrated via adding transport operations to the work plans and explaining one or more resources that provide transport and have to be assigned as well. The only limit implied through the  assumptions made  is  that  the  resource  uses  times  are  independent of  the processing sequences.

In the test difficulty, the options on which station an operation is presented are only amongst identical stations.  Hence,  for  each  operation  there  is  merely  one  value  for  its (nominal)  net  operation  time.  However, this assumption is not essential for the algorithms discussed afterward.


Related Discussions:- Problem type-aspects of scheduling

Determine minimum value of weigh to cause motion, Determine minimum value o...

Determine minimum value of weigh to cause motion: Determine minimum value of weight W required to cause motion of block, which rests on a horizontal plane. The block weighs 3

Evaluation of the internal energy of steam - thermodynamics, Evaluatio n o...

Evaluatio n of the Internal Energy of Steam: It is actual heat energy stored in steam above the freezing point of water. We know enthalpy = internal energy + pressure ener

Newer approaches to on-line scheduling, Newer Approaches To On-Line Schedul...

Newer Approaches To On-Line Scheduling  The on-line scheduling has established to be superior option than off-line scheduling upon the shop floor. The on-line scheduling looks

Corrosion resistance of zirconium, Q. Corrosion resistance of Zirconium? ...

Q. Corrosion resistance of Zirconium? Zirconium offers excellent corrosion resistance to most oxidizing and reducing acids and virtually all alkalis. However, it is not resist

Shaft, Ask questiofull details of shaftn #Minimum 100 words accepted#

Ask questiofull details of shaftn #Minimum 100 words accepted#

Belt drive, how will u designate a v belt

how will u designate a v belt

Lean mixture -mixture requirement , Lean Mixture: It generally ranges...

Lean Mixture: It generally ranges from approximately 15 : 1 to 17 : 1. By the use of this fuel, engine runs for higher economy.

Calculate the depth of water, (Buoyancy of a submerged body; compressibilit...

(Buoyancy of a submerged body; compressibility of air) A grade 4 science student inverts a cup full of air into a water tank. If it takes 1 lb of force to hold the cup down 3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd