Problem set for logistic regression, Applied Statistics

Assignment Help:

(1) What values can the response variable Y take in logistic regression, and hence what statistical distribution does Y follow? The response variable can take the value of either a 1 or a 0, and follows a binomial distribution.

(2) How are the parameters estimated in logistic regression?  Is this different from how the parameters are estimated in Ordinary Least Squares (OLS) regression? Logistic regressionparameters are estimated utilizing the maximum likelihood method, which is the same underlying method for OLS regression.  However, with logistic regression, an iterative method conducted via software because it is more complicated to estimate nonlinear parameters β0 and β1.  This differs from OLS, because the OLS method is by differentiating the sum of squared deviations.  This is an easier method because those deviations are linear in relation to β.

Coefficient estimates in logistic regression can also be found by utilizing the following methods

- noniterative weighted least squares

- discriminant function analysis

(3) How do we define a "residual" in logistic regression, and how is it computed?

In Logistic Regression, the Deviance fills the same role as the residual sumo f squares in linear regression. 

This is computed by calculating what is known as the likelihood-ratio test, Illustrated below:

D=-2ln ( likelihood of the fitted model / likelihood of the saturated model)

 Model 1:  Let's consider the logistic regression model, which we will refer to as Model 1, given by

                                log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.50*X3                         (M1),

where X3 is an indicator variable with X3=0 if the observation is from Group A and X3=1 if the observation is from Group B.  The likelihood value for this fitted model on 100 observations is 0.0850.

(4)    (6 points) For X1=2 and X2=1 compute the log-odds for each group, i.e. X3=0 and X3=1.

Group A (X3=0);

Group B (X3=1);

(5) For X1=2 and X2=1 compute the odds for each group, i.e. X3=0 and X3=1. 

(6) For X1=2 and X2=1 compute the probability of an event for each group, i.e. X3=0 and X3=1. 

(7) Using the equation for M1, compute the relative odds associated with X3, i.e. the relative odds of Group B compared to Group A. 

(8) Use the odds for each group to compute the relative odds of Group B to Group A. How does this number compare to the result in Question #7.  Does this make sense?

Model 2:  Now let's consider an alternate logistic regression model, which we will refer to as Model 2, given by

                                log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.50*X3 + 0.1*X4       (M2),

where X3 is an indicator variable with X3=0 if the observation is from Group A and X3=1 if the observation is from Group B.  The likelihood value from fitting this model to the same 100 observations as M1 is 0.0910.

(9) Use the G statistic to perform a likelihood ratio test of nested models for M1 and M2.  State the hypothesis that is being tested, compute the test statistic, and test the statistical significance using a critical value for alpha=0.05 from Table A.3 on page 375 in Regression Analysis By Example.  From these results should we prefer M1 or M2?


Related Discussions:- Problem set for logistic regression

Estimate a linear probability model, Estimate a linear probability model: ...

Estimate a linear probability model: Consider the multiple regression model: y = β 0 +β 1 x 1 +.....+β k x k +u Suppose that assumptions MLR.1-MLR4 hold, but not assump

A new weight-watching company, A new weight-watching company, Weight Reduce...

A new weight-watching company, Weight Reducers International, advertises that those who join will lose, on the average, 10 pounds the first two weeks with a standard deviation of 2

Multiple correspondence analysis, Correspondence Analysis (CA) is a general...

Correspondence Analysis (CA) is a generalization of PCA to contingency tables. The factors of correspondence analysis give an orthogonal decomposi:ion of the Chi- square associated

Chi square test, application of chi square test in civil engineering

application of chi square test in civil engineering

SPSS Program, I have 5 observations that i must plug into spss. I need an e...

I have 5 observations that i must plug into spss. I need an example of 1. I do not know if you are familiar with SPSS but I am going to ask anyway. Subject 1 is a Hispanic male who

PERCENTAGES, CALCULATE THE PERCENTAGE OF REFUNDS EXPECTED TO EXCEED $1000 U...

CALCULATE THE PERCENTAGE OF REFUNDS EXPECTED TO EXCEED $1000 UNDER THE CURRENT WITHHOLDING GUIDELINES

Describe the opportunities for statistical learning, 1. Recognize and expla...

1. Recognize and explain the opportunities for statistical learning. 2. Describe how the use of statistics supports student learning. 3. Recognize appropriate data displays a

Mean and median, The amounts of money won by the top ten finishers in a fam...

The amounts of money won by the top ten finishers in a famous car race are listed below. $1,172,246    $163,659    $440,584    $350,634     $290,596 $186,731    $145,809     $143,2

Purposive or judgement sampling, Purposive or Judgement Sampling Under ...

Purposive or Judgement Sampling Under this method of sampling, the choice  of selection of sample  items from the universe  depends exclusively on the judgement  of the investi

#Probablility, #In planning the teaching assignments for next semester, Mr....

#In planning the teaching assignments for next semester, Mr. Hinton must have a teacher in each of the 7 grades during each of the 6 periods of the day. If he has 10 teachers to ch

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd