Problem set for logistic regression, Applied Statistics

Assignment Help:

(1) What values can the response variable Y take in logistic regression, and hence what statistical distribution does Y follow? The response variable can take the value of either a 1 or a 0, and follows a binomial distribution.

(2) How are the parameters estimated in logistic regression?  Is this different from how the parameters are estimated in Ordinary Least Squares (OLS) regression? Logistic regressionparameters are estimated utilizing the maximum likelihood method, which is the same underlying method for OLS regression.  However, with logistic regression, an iterative method conducted via software because it is more complicated to estimate nonlinear parameters β0 and β1.  This differs from OLS, because the OLS method is by differentiating the sum of squared deviations.  This is an easier method because those deviations are linear in relation to β.

Coefficient estimates in logistic regression can also be found by utilizing the following methods

- noniterative weighted least squares

- discriminant function analysis

(3) How do we define a "residual" in logistic regression, and how is it computed?

In Logistic Regression, the Deviance fills the same role as the residual sumo f squares in linear regression. 

This is computed by calculating what is known as the likelihood-ratio test, Illustrated below:

D=-2ln ( likelihood of the fitted model / likelihood of the saturated model)

 Model 1:  Let's consider the logistic regression model, which we will refer to as Model 1, given by

                                log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.50*X3                         (M1),

where X3 is an indicator variable with X3=0 if the observation is from Group A and X3=1 if the observation is from Group B.  The likelihood value for this fitted model on 100 observations is 0.0850.

(4)    (6 points) For X1=2 and X2=1 compute the log-odds for each group, i.e. X3=0 and X3=1.

Group A (X3=0);

Group B (X3=1);

(5) For X1=2 and X2=1 compute the odds for each group, i.e. X3=0 and X3=1. 

(6) For X1=2 and X2=1 compute the probability of an event for each group, i.e. X3=0 and X3=1. 

(7) Using the equation for M1, compute the relative odds associated with X3, i.e. the relative odds of Group B compared to Group A. 

(8) Use the odds for each group to compute the relative odds of Group B to Group A. How does this number compare to the result in Question #7.  Does this make sense?

Model 2:  Now let's consider an alternate logistic regression model, which we will refer to as Model 2, given by

                                log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.50*X3 + 0.1*X4       (M2),

where X3 is an indicator variable with X3=0 if the observation is from Group A and X3=1 if the observation is from Group B.  The likelihood value from fitting this model to the same 100 observations as M1 is 0.0910.

(9) Use the G statistic to perform a likelihood ratio test of nested models for M1 and M2.  State the hypothesis that is being tested, compute the test statistic, and test the statistical significance using a critical value for alpha=0.05 from Table A.3 on page 375 in Regression Analysis By Example.  From these results should we prefer M1 or M2?


Related Discussions:- Problem set for logistic regression

Business staitistices- soltion to :, A file on DocDepot in the assignments ...

A file on DocDepot in the assignments folder on doc-depot called bmi.mtp contains data on the Body Mass Index (BMI) of a population of Ottawa residents. The first column identifies

Z-score of a student, A study was designed to investigate the effects of tw...

A study was designed to investigate the effects of two variables - (1) a student's level of mathematical anxiety and (2) teaching method - on a student's achievement in a mathemati

Simple linear regression, Simple Linear Regression   While correlati...

Simple Linear Regression   While correlation analysis determines the degree to which the variables are related, regression analysis develops the relationship between the var

Choose the correct null hypotheses, For the following claim, find the null ...

For the following claim, find the null and alternative hypotheses, test statistic, P-value, critical value and draw a conclusion. Assume that a simple random sample has been selec

#regression, #regression line drawn as Y=C+1075x, when x was 2, and y was 2...

#regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Determine best estimates of the population mean and variance, Question: ...

Question: (a) A normal distribution is thought to have a mean of 50. A random sample of 100 gave a mean of 52.6 and a standard deviation of 14.5. A significance test was carri

Simplex method, #questionMaximize Z= 3x1 + 2X2 Subject to the constraints: ...

#questionMaximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0..

Sdsad, Ask questionsadsadsadsadas#Minimum 100 words accepted#

Ask questionsadsadsadsadas#Minimum 100 words accepted#

Simple linear regression, We are interested in assessing the effects of tem...

We are interested in assessing the effects of temperature (low, medium, and high) and technical configuration on the amount of waste output for a manufacturing plant. Suppose that

Use event rule ot estimates the claim, Make a decision about the given clai...

Make a decision about the given claim. Use only the rare event rule, and make subjective estimates to determine whether events are likely. For example, if the claim is that a coi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd