Problem set for logistic regression, Applied Statistics

Assignment Help:

(1) What values can the response variable Y take in logistic regression, and hence what statistical distribution does Y follow? The response variable can take the value of either a 1 or a 0, and follows a binomial distribution.

(2) How are the parameters estimated in logistic regression?  Is this different from how the parameters are estimated in Ordinary Least Squares (OLS) regression? Logistic regressionparameters are estimated utilizing the maximum likelihood method, which is the same underlying method for OLS regression.  However, with logistic regression, an iterative method conducted via software because it is more complicated to estimate nonlinear parameters β0 and β1.  This differs from OLS, because the OLS method is by differentiating the sum of squared deviations.  This is an easier method because those deviations are linear in relation to β.

Coefficient estimates in logistic regression can also be found by utilizing the following methods

- noniterative weighted least squares

- discriminant function analysis

(3) How do we define a "residual" in logistic regression, and how is it computed?

In Logistic Regression, the Deviance fills the same role as the residual sumo f squares in linear regression. 

This is computed by calculating what is known as the likelihood-ratio test, Illustrated below:

D=-2ln ( likelihood of the fitted model / likelihood of the saturated model)

 Model 1:  Let's consider the logistic regression model, which we will refer to as Model 1, given by

                                log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.50*X3                         (M1),

where X3 is an indicator variable with X3=0 if the observation is from Group A and X3=1 if the observation is from Group B.  The likelihood value for this fitted model on 100 observations is 0.0850.

(4)    (6 points) For X1=2 and X2=1 compute the log-odds for each group, i.e. X3=0 and X3=1.

Group A (X3=0);

Group B (X3=1);

(5) For X1=2 and X2=1 compute the odds for each group, i.e. X3=0 and X3=1. 

(6) For X1=2 and X2=1 compute the probability of an event for each group, i.e. X3=0 and X3=1. 

(7) Using the equation for M1, compute the relative odds associated with X3, i.e. the relative odds of Group B compared to Group A. 

(8) Use the odds for each group to compute the relative odds of Group B to Group A. How does this number compare to the result in Question #7.  Does this make sense?

Model 2:  Now let's consider an alternate logistic regression model, which we will refer to as Model 2, given by

                                log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.50*X3 + 0.1*X4       (M2),

where X3 is an indicator variable with X3=0 if the observation is from Group A and X3=1 if the observation is from Group B.  The likelihood value from fitting this model to the same 100 observations as M1 is 0.0910.

(9) Use the G statistic to perform a likelihood ratio test of nested models for M1 and M2.  State the hypothesis that is being tested, compute the test statistic, and test the statistical significance using a critical value for alpha=0.05 from Table A.3 on page 375 in Regression Analysis By Example.  From these results should we prefer M1 or M2?


Related Discussions:- Problem set for logistic regression

Root mean square deviation, Root Mean Square Deviation The standard d...

Root Mean Square Deviation The standard deviation is also called the ROOT MEAN SQUARE DEVIATION. This is because it is the ROOT (Step 4) of the MEAN (Step 3) o

ANOVA, Your company operates a machine shop, and, having heard you had expe...

Your company operates a machine shop, and, having heard you had experience in statistics and design of experiments, consulted you for your opinion on an experiment they want to run

Population variance, Examining the Population Variance Business decisio...

Examining the Population Variance Business decision making does not limit itself to setting up the hypothesis to test for the equality of more than two means or proportions sim

Measurement errors models, How can we analyse data with four bilateral resp...

How can we analyse data with four bilateral response variables measured with errors and three covariated measured without errors?

Corelation regrassion, the two regrassion line will pass through the point ...

the two regrassion line will pass through the point (x,y)

Normal probability plots, The Null Hypothesis - H0:  The random errors will...

The Null Hypothesis - H0:  The random errors will be normally distributed The Alternative Hypothesis - H1:  The random errors are not normally distributed Reject H0: when P-v

Compute the output of correlation, Q. Compute the output of correlation? ...

Q. Compute the output of correlation? The following figure shows (a) a 3-bit image of size 5-by-5 image in the square, with x and y coordinates specified, (b) a Laplacian

Cartogram or mapograph, Cartogram or Mapograph:   Statistical maps are a...

Cartogram or Mapograph:   Statistical maps are also used to represent data like density of population indifferent states in the country or different countries in the world or th

Level of significance, Level of Significance: α The main purpose of hyp...

Level of Significance: α The main purpose of hypothesis testing is not to question the computed value of the sample statistic, but to make judgment about the difference between

the npv of the book , Bill Clinton reportedly was paid $10 million to writ...

Bill Clinton reportedly was paid $10 million to write his book My Way. The book took three years to write. In the time he spent writing, Clinton could have been paid to make speech

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd