Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Present your own fully documented and tested programming example illustrating the problem of unbalanced loads. Describe the use of OpenMP's scheduler as a means of mitigating this problem.
The below example shows a number of tasks that all update a global counter. Since threads share the same memory space, they indeed see and update the same memory location. The code returns a false result because updating the variable is much quicker than creating the thread as on a multicore processor the chance of errors will greatly increase. If we artificially increase the time for the update, we will no longer get the right result. All threads read out the value of sum, wait a while (presumably calculating something) and then update.
#include
#include "pthread.h"
int sum=0;
void adder() {
int sum = 0;
int t = sum; sleep(1); sum = t+1;
return;
}
#define NTHREADS 50
int main() {
int i;
pthread_t threads[NTHREADS];
printf("forking\n");
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1;
printf("joining\n");
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
{
if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;
printf("Sum computed: %d\n",sum);
return 0;
The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way.
#pragma omp for
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
Buffering Messages exchanged by communication processes reside in a impermanent queue. Such a queue can be executed in three ways. Zero capacity: The queue length is 0.
Explain working of the logical file system The logical file system manages metadata information. Metadata contains all of the file-system structure, excluding actual data. It h
summary of what operating system do
Consider a large web-based database. In some sense, Google is sort of like this. There might be many users who want to read from the database, but only a few users who are allowed
List and discuss the various services provided by the operating system. Program execution - system capability to load a program into memory and to run it. I/O operatio
What is contiguous allocation? Allocation of a group of consecutive sectors for a one file.
Define FIFO Page Replacement Algorithm This policy simply eliminates pages in the order they arrived in the main memory. By using this policy we simply remove a page based upo
What are the methods for handling deadlocks ? The technique for handling the deadlocks are: We are able to use protocol to prevent or avoid the deadlock, make sure tha
In this project, you will implement the Chandy and Misra's (CM) algorithm using POSIX Threads (Pthreads). The algorithm is a distributed algorithm to solve a generalized dining
Evicting the most-recently used (MRU) page does very well on LRU's worst case. In general, however, MRU is a bad idea, since many programs exhibit temporal locality in their memory
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd