Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Present your own fully documented and tested programming example illustrating the problem of unbalanced loads. Describe the use of OpenMP's scheduler as a means of mitigating this problem.
The below example shows a number of tasks that all update a global counter. Since threads share the same memory space, they indeed see and update the same memory location. The code returns a false result because updating the variable is much quicker than creating the thread as on a multicore processor the chance of errors will greatly increase. If we artificially increase the time for the update, we will no longer get the right result. All threads read out the value of sum, wait a while (presumably calculating something) and then update.
#include
#include "pthread.h"
int sum=0;
void adder() {
int sum = 0;
int t = sum; sleep(1); sum = t+1;
return;
}
#define NTHREADS 50
int main() {
int i;
pthread_t threads[NTHREADS];
printf("forking\n");
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1;
printf("joining\n");
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
{
if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;
printf("Sum computed: %d\n",sum);
return 0;
The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way.
#pragma omp for
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
Optimal page replacement An optimal page replacement algorithm has the least page fault rate of all algorithms. The algorithm states that put back the page that will not be us
How are file sharing and protection implemented? To execute file sharing and protection the system have to maintain more file and directory attributes than are needed on a sing
Question: a) What do you understand by Active directory domain in Windows Server 2008? Support your answer with a diagram. b) Distinguish between active directory trees
Determine the reasons for Poor response time Process busy or High I/O rates or High paging rates
SSTF stands for Abbreviation of SSTF is Shortest-Seek-time-first scheduling
Write a brief note on demand paging. A demand paging is alike to a paging system with swapping. The Processes reside on the secondary memory while we want to implement a proces
Define seek time and latency time. The time taken by the head to move to the appropriate cylinder or track is known as seek time. Once the head is at right track, it must wait
Q. What are two dreadful problems that designers should solve to implement a network-transparent system? Answer: One such issue is making all the processors as well as storag
case study:interprocess communication
How the Nested Macro calls are expanded LIFO (Last in First out)
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd