Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Present your own fully documented and tested programming example illustrating the problem of unbalanced loads. Describe the use of OpenMP's scheduler as a means of mitigating this problem.
The below example shows a number of tasks that all update a global counter. Since threads share the same memory space, they indeed see and update the same memory location. The code returns a false result because updating the variable is much quicker than creating the thread as on a multicore processor the chance of errors will greatly increase. If we artificially increase the time for the update, we will no longer get the right result. All threads read out the value of sum, wait a while (presumably calculating something) and then update.
#include
#include "pthread.h"
int sum=0;
void adder() {
int sum = 0;
int t = sum; sleep(1); sum = t+1;
return;
}
#define NTHREADS 50
int main() {
int i;
pthread_t threads[NTHREADS];
printf("forking\n");
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1;
printf("joining\n");
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; } The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way. #include #include #include "pthread.h" int sum=0; void adder() { int sum = 0; int t = sum; sleep(1); sum = t+1; return; } #define NTHREADS 50 int main() { int i; pthread_t threads[NTHREADS]; printf("forking\n"); #pragma omp for for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
{
if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1;
printf("Sum computed: %d\n",sum);
return 0;
The use of OpenMP is the parallel loop. Here, all iterations can be executed independently and in any order. The pragma CPP directive then conveys this fact to the compiler. A sequential code can be easily parallelized this way.
#pragma omp for
for (i=0; i if (pthread_create(threads+i,NULL,&adder,NULL)!=0) return i+1; } printf("joining\n"); for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
for (i=0; i { if (pthread_join(threads[i],NULL)!=0) return NTHREADS+i+1; printf("Sum computed: %d\n",sum); } return 0; }
Define Enforcing Modularity for C Additionally, in C it is sometimes necessary to create modularity of design. C++ is very natural model for component based application design
Consider a computer system with a 32-bit logical address and 4KB page size. The system supports up to 512MB of physical memory. How many entries are there in a conventional single-
Define the “Throughput” of a system Throughput is Number of programs processed by it per unit time
Scalability Scalability is the ability of the system to adapt to increased service load. A scalable system will respond more gracefully to increased load than a non scalable on
Many-to-One Model (Green Threads) Implementations of the many-to-one model a lot of user threads to one kernel thread permit the application to create any number of threads tha
What are the five major activities of an operating system in regard to process management? The creation and deletion of both user and system processes The suspension and res
There are three kinds of Data Abstraction: Physical level: The minimum level of abstraction defines how data are saved. Logical level: The next bigger level of a
What advantages are there to this two-level directory? Users are isolated from each other. Users have more freedom in choosing file names.
Compare contiguous-memory allocation with pure paging in the following aspects: 1. In support of dynamic memory allocation: most systems allow programs to allocate more memory t
Q. Segmentation is alike to paging but uses variable-sized "pages". Describe two segment-replacement algorithms based on FIFO and LRU page replacement schemes. Remember that since
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd