Principle of superposition, Mathematics

Assignment Help:

If y1 (t) and y2 (t) are two solutions to a linear, homogeneous differential equation thus it is y (t ) = c1 y1 (t ) + c2 y2 (t )   ........................(3)

Remember that we didn't comprise the restriction of constant coefficient or second order in this. It will work for any linear homogeneous differential equation.

If we further suppose second order and one other condition that we'll provide in a second we can go a step further.

If y1 (t) and y2 (t) are two solutions to a linear, second order homogeneous differential equation and they are "nice enough" so the general solution to the linear, second order differential equation is specified by (3).

So, just what do we mean by "nice enough"?  We'll hold off on that until a later section.  At this point you'll hopefully believe it when we say that specific functions are "nice enough".

Thus, if we now make the assumption as we are dealing along with a linear, second order differential equations, we now identify that (3) will be its general solution. The subsequent question which we can ask is how to get the constants c1 and c2. Because we have two constants it makes sense, confidently, which we will require two equations or conditions to get them.

One manner to do this is to identify the value of the solution at two distinct points or

y (t0) =  y0

 y (t1) = y1

 These are usually termed as boundary values and are not actually the focus of this course thus we won't be working along with them.

The other way to get the constants would be to identify the value of the solution and its derivative at an exacting point.  Or,

 y (t0) =  y0

 y′ (t0) = y0

These are the two conditions which we'll be using here. When with the first order differential equations these will be termed as initial conditions.


Related Discussions:- Principle of superposition

Ordinary differential equation, find the normalised differential of the fol...

find the normalised differential of the following {1,x,x^3}

Times tables, how can you memorise you times facts

how can you memorise you times facts

Problem solving, compare 643,251;633,512; and 633,893. The answer is 633,51...

compare 643,251;633,512; and 633,893. The answer is 633,512

Equivalent Fractions and Decimals, write each fraction as a decimal .round ...

write each fraction as a decimal .round to the nearest hundredth if necessary (1-4) (14-21)

Geometry, #question.prove that the diagonals of a trapezium divide each oth...

#question.prove that the diagonals of a trapezium divide each other proportionally .

Fractions, A recipe calls for 2 1/4 teaspoons of salt for every 1 1/8 teasp...

A recipe calls for 2 1/4 teaspoons of salt for every 1 1/8 teaspoons of black pepper used. How many teaspoons of salt are needed for each teaspoon of pepper used ?

Interpretations of the derivative , Interpretations of the Derivative : ...

Interpretations of the Derivative : Before moving on to the section where we study how to calculate derivatives by ignoring the limits we were evaluating in the earlier secti

Variation, If p=10 when q=2,find p when q=5

If p=10 when q=2,find p when q=5

Determine and classify all critical points , Determine and classify all the...

Determine and classify all the critical points of the given function.  Described the intervals where function is increasing & decreasing. Solution: Firstly we'll require

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd