Principle of superposition, Mathematics

Assignment Help:

If y1 (t) and y2 (t) are two solutions to a linear, homogeneous differential equation thus it is y (t ) = c1 y1 (t ) + c2 y2 (t )   ........................(3)

Remember that we didn't comprise the restriction of constant coefficient or second order in this. It will work for any linear homogeneous differential equation.

If we further suppose second order and one other condition that we'll provide in a second we can go a step further.

If y1 (t) and y2 (t) are two solutions to a linear, second order homogeneous differential equation and they are "nice enough" so the general solution to the linear, second order differential equation is specified by (3).

So, just what do we mean by "nice enough"?  We'll hold off on that until a later section.  At this point you'll hopefully believe it when we say that specific functions are "nice enough".

Thus, if we now make the assumption as we are dealing along with a linear, second order differential equations, we now identify that (3) will be its general solution. The subsequent question which we can ask is how to get the constants c1 and c2. Because we have two constants it makes sense, confidently, which we will require two equations or conditions to get them.

One manner to do this is to identify the value of the solution at two distinct points or

y (t0) =  y0

 y (t1) = y1

 These are usually termed as boundary values and are not actually the focus of this course thus we won't be working along with them.

The other way to get the constants would be to identify the value of the solution and its derivative at an exacting point.  Or,

 y (t0) =  y0

 y′ (t0) = y0

These are the two conditions which we'll be using here. When with the first order differential equations these will be termed as initial conditions.


Related Discussions:- Principle of superposition

Solve the algebraic equestions, Solve the following equestions i.2x-8=8 ...

Solve the following equestions i.2x-8=8 ii.3x+2/5=4 iii.8/3x-2=2 iv.0.6x-5=7

Can u please tell me how to solve, a triangle with side lengths in the rati...

a triangle with side lengths in the ratio 3:4:5 is inscribed in a circle

Evolve a game to help children remember basic multiplication, Evolve a game...

Evolve a game to help children remember basic multiplication facts. In this section we have looked at ways of helping children absorb some simple multiplication facts. But what

Proof integral function, Proof of: if f(x) > g(x) for a x b th...

Proof of: if f(x) > g(x) for a x b then a ∫ b  f(x) dx > g(x). Because we get f(x) ≥ g(x) then we knows that f(x) - g(x) ≥ 0 on a ≤ x ≤ b and therefore by Prop

DIFFERENTIAL EQUATION, Find an integrating factor for the linear differenti...

Find an integrating factor for the linear differential equation and hence Önd its general solution: SOLVE T^ 2 DY DX+T2

Describe the properties of inequalities, Describe the Properties of Inequal...

Describe the Properties of Inequalities ? Postulate In comparing two quantities, say a and b, there are exactly three possibilities. (1) a is less than b. (a b)

What was the temperature at midnight, The temperature at 6 P.M. was 31°F. T...

The temperature at 6 P.M. was 31°F. Through midnight, it had dropped 40°F. What was the temperature at midnight? Visualize a number line. The drop from 31° to 0° is 31°. There

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd