Principle of superposition, Mathematics

Assignment Help:

If y1 (t) and y2 (t) are two solutions to a linear, homogeneous differential equation thus it is y (t ) = c1 y1 (t ) + c2 y2 (t )   ........................(3)

Remember that we didn't comprise the restriction of constant coefficient or second order in this. It will work for any linear homogeneous differential equation.

If we further suppose second order and one other condition that we'll provide in a second we can go a step further.

If y1 (t) and y2 (t) are two solutions to a linear, second order homogeneous differential equation and they are "nice enough" so the general solution to the linear, second order differential equation is specified by (3).

So, just what do we mean by "nice enough"?  We'll hold off on that until a later section.  At this point you'll hopefully believe it when we say that specific functions are "nice enough".

Thus, if we now make the assumption as we are dealing along with a linear, second order differential equations, we now identify that (3) will be its general solution. The subsequent question which we can ask is how to get the constants c1 and c2. Because we have two constants it makes sense, confidently, which we will require two equations or conditions to get them.

One manner to do this is to identify the value of the solution at two distinct points or

y (t0) =  y0

 y (t1) = y1

 These are usually termed as boundary values and are not actually the focus of this course thus we won't be working along with them.

The other way to get the constants would be to identify the value of the solution and its derivative at an exacting point.  Or,

 y (t0) =  y0

 y′ (t0) = y0

These are the two conditions which we'll be using here. When with the first order differential equations these will be termed as initial conditions.


Related Discussions:- Principle of superposition

Linear programming, Consider the following linear programming problem: M...

Consider the following linear programming problem: Min (12x 1 +18x 2 )             X 1 + 2x 2 ≤ 40             X 1 ≤ 50             X 1 + X 2 = 40             X

What are logarithmic function, The logarithm of a provided number b to the ...

The logarithm of a provided number b to the base 'a' is the exponent showing the power to which the base 'a' have to be raised to get the number b. This number is defined as log a

Do all our activities involve mathematics?, Do All Our Activities Involve M...

Do All Our Activities Involve Mathematics? :  The answer to this is 'yes' and 'no'. For those who look for mathematics and know where to look for it, it is 'yes'. For those who do

How to change improper fractions to mixed/ proper fractions, how do you cha...

how do you change an improper fraction to a mixed number or whole or proper

Demerits and merits -the arithmetic mean or a.m, Demerits and merits of the...

Demerits and merits of the measures of central tendency The arithmetic mean or a.m Merits i.  It employs all the observations given ii. This is a very useful

how many of the original vectors, We have claimed that a randomly generate...

We have claimed that a randomly generated point lies on the equator of the sphere  independent of where we pick the North Pole.  To test this claim randomly generate ten  vectors i

Variation of parameters, In this case we will require deriving a new formul...

In this case we will require deriving a new formula for variation of parameters for systems.  The derivation now will be much simpler than the when we first noticed variation of pa

Example of communicating the meaning of addition, Ms. Mehta teaches in a go...

Ms. Mehta teaches in a government primary school in Delhi. The children who come to her in Class 1 are familiar with a few numbers. At the beginning of the session, she asks the ch

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd