Principle of superposition, Mathematics

Assignment Help:

If y1 (t) and y2 (t) are two solutions to a linear, homogeneous differential equation thus it is y (t ) = c1 y1 (t ) + c2 y2 (t )   ........................(3)

Remember that we didn't comprise the restriction of constant coefficient or second order in this. It will work for any linear homogeneous differential equation.

If we further suppose second order and one other condition that we'll provide in a second we can go a step further.

If y1 (t) and y2 (t) are two solutions to a linear, second order homogeneous differential equation and they are "nice enough" so the general solution to the linear, second order differential equation is specified by (3).

So, just what do we mean by "nice enough"?  We'll hold off on that until a later section.  At this point you'll hopefully believe it when we say that specific functions are "nice enough".

Thus, if we now make the assumption as we are dealing along with a linear, second order differential equations, we now identify that (3) will be its general solution. The subsequent question which we can ask is how to get the constants c1 and c2. Because we have two constants it makes sense, confidently, which we will require two equations or conditions to get them.

One manner to do this is to identify the value of the solution at two distinct points or

y (t0) =  y0

 y (t1) = y1

 These are usually termed as boundary values and are not actually the focus of this course thus we won't be working along with them.

The other way to get the constants would be to identify the value of the solution and its derivative at an exacting point.  Or,

 y (t0) =  y0

 y′ (t0) = y0

These are the two conditions which we'll be using here. When with the first order differential equations these will be termed as initial conditions.


Related Discussions:- Principle of superposition

Variation, If p=10 when q=2,find p when q=5

If p=10 when q=2,find p when q=5

Compounding and Simple Interest, A painting was purchased 11 years ago for ...

A painting was purchased 11 years ago for $26900. It has just been sold for $78000. Calculate the flat rate of appreciation p.a.

Shortcuts, pls told the maths shortcuts

pls told the maths shortcuts

What is the value of tan in terms of sin, What is the value of tan? in term...

What is the value of tan? in terms of sin?. Ans:    Tan ? = S i n ?/ C os ? Tan ? = S i n ? / √1 - S i n   2?

Determine the property of partial ordered relation, Determine the property ...

Determine the property of Partial ordered relation Question: Partial ordered relation is transitive, reflexive and  Answer: antisymmetric

Word problems, Ana has hiked 4 1/2 miles. She is 2/3 of the way along the t...

Ana has hiked 4 1/2 miles. She is 2/3 of the way along the trail. How long is the trail?

Polynomial : f(x).f(1/x), A polynomial satisfies the following relation f(x...

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3) Ans) The required polynomial is x^5 +1. This polynomial satisfies the condition state

Calculus (The squeeze theorem), When finding the limit as x approaches 0 th...

When finding the limit as x approaches 0 the for function (square root of x^3 + x^2) cos(pi/2x) would the limit not exist because there would be a zero in the denominator?

Similar triangles, S IMILAR TRIANGLES : Geometry  is  the  right  ...

S IMILAR TRIANGLES : Geometry  is  the  right  foundation  of all  painting,  I have  decided to  teach its  rudiments  and  principles  to  all  youngsters  eager for  ar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd