Prims algorithm, Data Structure & Algorithms

Assignment Help:

Prim's algorithm employs the concept of sets. Rather than processing the graph by sorted order of edges, this algorithm processes the edges within the graph randomly by building up disjoint sets.

It employs two disjoint sets A and A. Prim's algorithm works by iterating through the nodes and then determining the shortest edge from the set A to that of set A (that means outside A), followed by the adding up the node to the new graph. While all the nodes are processed, we have a minimum cost spanning tree.

Instead building a sub-graph by inserting one edge at a time, Prim's algorithm builds tree one vertex at a time.

The steps in Prim's algorithm are as:

Consider G be the graph having n vertices for which minimum cost spanning tree is to be made.

Consider T be the minimum spanning tree.

consider T be a single vertex x.

while (T has fewer than n vertices)

{

find the smallest edge connecting T through G-T

add it to T

}

Let the graph of Figure.  And another Figure shows the various steps involved in the construction of Minimum Cost Spanning Tree of graph of this Figure

2433_Prims Algorithm.png

Figure: Construction of Minimum Cost Spanning Tree for the Graph of Figure by application of Prim's algorithm

The following are several steps in the construction of MST for the graph of Figure via Prim's algorithm.

Step 1:  We start along a single vertex (node). Now the set A has this single node and set A has rest of the nodes. Add the edge along the lowest cost from A to A. The edge along cost 4 is added.

Step 2: Lowest cost path through shaded portion of the graph to the rest of the graph (edge along cost 3) is chosen and added to MST.

Step 3: Lowest cost path through shaded portion of the graph to the rest of the graph (edge with cost 6) is chosen and inserted to MST.

Step 4: Lowest cost path from shaded portion of graph to the rest of the graph (edge along cost 73) is chosen and added to MST.

Step 5: The next lowest cost edge to the set not in MST is 8 but makes a cycle. So, it is discarded. The next lowest cost edge 9 is inserted. Now the MST has all the vertices of the graph. This results in the MST of the original graph.

Comparison of Kruskal's algorithm & Prim's algorithm

 

Kruskal's algorithm

Prim's algorithm

Principle

Based on generic minimum cost

spanning tree algorithms

A special case of generic minimum

cost spanning tree algorithm. Operates like Dijkstra's algorithm for finding shortest path in a graph.

Operation

Operates on a single set of

edges in the graph

Operates on two disjoint sets of

edges in the graph

Running time

O(E log E) where E is the

number of edges in the graph

O(E log V), which is

asymptotically same as Kruskal's algorithm

From the above comparison, it might be observed that for dense graphs with more number of edges for a given number of vertices, Prim's algorithm is more efficient.


Related Discussions:- Prims algorithm

Ruby implementation of the symbol abstract data type, Ruby implementation o...

Ruby implementation of the Symbol ADT Ruby implementation of the Symbol ADT, as mentioned, hinges on making Symbol class instances immutable that corresponds to the relative la

Explain divide and conquer algorithms, Explain divide and conquer algorithm...

Explain divide and conquer algorithms  Divide  and  conquer  is  probably  the  best  known  general  algorithm  design  method.  It   work according to the following general p

Sparse matrix, How sparse matrix stored in the memory of a computer?

How sparse matrix stored in the memory of a computer?

Merge sort, #question. merging 4 sorted files containing 50,10,25,15 record...

#question. merging 4 sorted files containing 50,10,25,15 records will take time?

Explain about the doubly linked list with neat diagram, Problem 1. Expl...

Problem 1. Explain about the doubly linked list with neat diagram. Diagram Explaining doubly linked list 2. Explain what are the criteria to be used in evaluatin

Merging, Merging two sequence using CREW merge

Merging two sequence using CREW merge

Usage of linked lists for polynomial manipulation, Q. Establish the usage o...

Q. Establish the usage of linked lists for polynomial manipulation.                                       Ans. Usag e of Linked List for Polynomial Manipulation. Link

Implementation of queue, For a queue a physical analogy is a line at bookin...

For a queue a physical analogy is a line at booking counter. At booking counter, customers go to the rear (end) of the line & customers are attended to several services from the fr

Determine the space complexity of euclid algorithm, 1)      Why space compl...

1)      Why space complexity is comparatively more critical than time complexity? 2)      Determine the space complexity of Euclid Algorithm?

Cohen sutherland algorithm, Using the cohen sutherland. Algorithm. Find the...

Using the cohen sutherland. Algorithm. Find the visible portion of the line P(40,80) Q(120,30) inside the window is defined as ABCD A(20,20),B(60,20),C(60,40)and D(20,40)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd