Prims algorithm, Data Structure & Algorithms

Assignment Help:

Prim's algorithm employs the concept of sets. Rather than processing the graph by sorted order of edges, this algorithm processes the edges within the graph randomly by building up disjoint sets.

It employs two disjoint sets A and A. Prim's algorithm works by iterating through the nodes and then determining the shortest edge from the set A to that of set A (that means outside A), followed by the adding up the node to the new graph. While all the nodes are processed, we have a minimum cost spanning tree.

Instead building a sub-graph by inserting one edge at a time, Prim's algorithm builds tree one vertex at a time.

The steps in Prim's algorithm are as:

Consider G be the graph having n vertices for which minimum cost spanning tree is to be made.

Consider T be the minimum spanning tree.

consider T be a single vertex x.

while (T has fewer than n vertices)

{

find the smallest edge connecting T through G-T

add it to T

}

Let the graph of Figure.  And another Figure shows the various steps involved in the construction of Minimum Cost Spanning Tree of graph of this Figure

2433_Prims Algorithm.png

Figure: Construction of Minimum Cost Spanning Tree for the Graph of Figure by application of Prim's algorithm

The following are several steps in the construction of MST for the graph of Figure via Prim's algorithm.

Step 1:  We start along a single vertex (node). Now the set A has this single node and set A has rest of the nodes. Add the edge along the lowest cost from A to A. The edge along cost 4 is added.

Step 2: Lowest cost path through shaded portion of the graph to the rest of the graph (edge along cost 3) is chosen and added to MST.

Step 3: Lowest cost path through shaded portion of the graph to the rest of the graph (edge with cost 6) is chosen and inserted to MST.

Step 4: Lowest cost path from shaded portion of graph to the rest of the graph (edge along cost 73) is chosen and added to MST.

Step 5: The next lowest cost edge to the set not in MST is 8 but makes a cycle. So, it is discarded. The next lowest cost edge 9 is inserted. Now the MST has all the vertices of the graph. This results in the MST of the original graph.

Comparison of Kruskal's algorithm & Prim's algorithm

 

Kruskal's algorithm

Prim's algorithm

Principle

Based on generic minimum cost

spanning tree algorithms

A special case of generic minimum

cost spanning tree algorithm. Operates like Dijkstra's algorithm for finding shortest path in a graph.

Operation

Operates on a single set of

edges in the graph

Operates on two disjoint sets of

edges in the graph

Running time

O(E log E) where E is the

number of edges in the graph

O(E log V), which is

asymptotically same as Kruskal's algorithm

From the above comparison, it might be observed that for dense graphs with more number of edges for a given number of vertices, Prim's algorithm is more efficient.


Related Discussions:- Prims algorithm

User-specified memory location, You need to implement a function which will...

You need to implement a function which will write out a given user-specified memory location to disk in base 10. That means that you have to convert the large number data structure

Time complexity, how to learn about time complexity of a particular algorit...

how to learn about time complexity of a particular algorithm

Data Structure, Ask consider the file name cars.text each line in the file ...

Ask consider the file name cars.text each line in the file contains information about a car ( year,company,manufacture,model name,type) 1-read the file 2-add each car which is repr

Graphs, In this unit, we will describe a data structure called Graph. Actua...

In this unit, we will describe a data structure called Graph. Actually, graph is a general tree along no parent-child relationship. In computer science, Graphs have several applica

Program for binary search, Illustrates the program for Binary Search. P...

Illustrates the program for Binary Search. Program: Binary Search /*Header Files*/ #include #include /*Functions*/ void binary_search(int array[ ], int value,

Expression trees, What are the expression trees? Represent the below writte...

What are the expression trees? Represent the below written expression using a tree. Give a relevant comment on the result that you get when this tree is traversed in Preorder,

Applications of binary trees, In computer programming, Trees are utilized ...

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Gam

Threaded Binary Tree, If a node in a binary tree is not containing left or ...

If a node in a binary tree is not containing left or right child or it is a leaf node then that absence of child node can be represented by the null pointers. The space engaged by

Breadth-first search, Breadth-first search starts at a given vertex h, whic...

Breadth-first search starts at a given vertex h, which is at level 0. In the first stage, we go to all the vertices that are at the distance of one edge away. When we go there, we

Define complete binary tree, Define Complete Binary Tree Complete Binar...

Define Complete Binary Tree Complete Binary Tree:- A whole binary tree of depth d is that strictly binary tree all of whose leaves are at level D.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd