Prims algorithm, Data Structure & Algorithms

Assignment Help:

Prim's algorithm employs the concept of sets. Rather than processing the graph by sorted order of edges, this algorithm processes the edges within the graph randomly by building up disjoint sets.

It employs two disjoint sets A and A. Prim's algorithm works by iterating through the nodes and then determining the shortest edge from the set A to that of set A (that means outside A), followed by the adding up the node to the new graph. While all the nodes are processed, we have a minimum cost spanning tree.

Instead building a sub-graph by inserting one edge at a time, Prim's algorithm builds tree one vertex at a time.

The steps in Prim's algorithm are as:

Consider G be the graph having n vertices for which minimum cost spanning tree is to be made.

Consider T be the minimum spanning tree.

consider T be a single vertex x.

while (T has fewer than n vertices)

{

find the smallest edge connecting T through G-T

add it to T

}

Let the graph of Figure.  And another Figure shows the various steps involved in the construction of Minimum Cost Spanning Tree of graph of this Figure

2433_Prims Algorithm.png

Figure: Construction of Minimum Cost Spanning Tree for the Graph of Figure by application of Prim's algorithm

The following are several steps in the construction of MST for the graph of Figure via Prim's algorithm.

Step 1:  We start along a single vertex (node). Now the set A has this single node and set A has rest of the nodes. Add the edge along the lowest cost from A to A. The edge along cost 4 is added.

Step 2: Lowest cost path through shaded portion of the graph to the rest of the graph (edge along cost 3) is chosen and added to MST.

Step 3: Lowest cost path through shaded portion of the graph to the rest of the graph (edge with cost 6) is chosen and inserted to MST.

Step 4: Lowest cost path from shaded portion of graph to the rest of the graph (edge along cost 73) is chosen and added to MST.

Step 5: The next lowest cost edge to the set not in MST is 8 but makes a cycle. So, it is discarded. The next lowest cost edge 9 is inserted. Now the MST has all the vertices of the graph. This results in the MST of the original graph.

Comparison of Kruskal's algorithm & Prim's algorithm

 

Kruskal's algorithm

Prim's algorithm

Principle

Based on generic minimum cost

spanning tree algorithms

A special case of generic minimum

cost spanning tree algorithm. Operates like Dijkstra's algorithm for finding shortest path in a graph.

Operation

Operates on a single set of

edges in the graph

Operates on two disjoint sets of

edges in the graph

Running time

O(E log E) where E is the

number of edges in the graph

O(E log V), which is

asymptotically same as Kruskal's algorithm

From the above comparison, it might be observed that for dense graphs with more number of edges for a given number of vertices, Prim's algorithm is more efficient.


Related Discussions:- Prims algorithm

Graph search using iterative deepening, Prove that uniform cost search and ...

Prove that uniform cost search and breadth- first search with constant steps are optimal when used with the Graph-Search algorithm (see Figure). Show a state space with varying ste

Determine the types of java, Determine the types of JAVA Java has two p...

Determine the types of JAVA Java has two parts... 1. Core language -- variables, arrays, objects o Java Virtual Machine (JVM) runs the core language o Core language is

Representation of sets?, A set s is conveniently shown in a computer store ...

A set s is conveniently shown in a computer store by its characteristic function C(s). This is an array of logical numbers whose ith element has the meaning "i is present in s". As

Context sensitive f1 help on a field, In what ways we can get the context s...

In what ways we can get the context sensitive F1 help on a field?' Data element documentation. Data element additional text in screen painter. Using the process on help r

Complexity of an algorithm, compare two functions n and 2n for various valu...

compare two functions n and 2n for various values of n. determine when second becomes larger than first

Tree, tree is graph or not

tree is graph or not

Advantages of dry running a flowchart, Advantages of dry running a flowchar...

Advantages of dry running a flowchart When dry running a flowchart it's advisable to draw up a trace table illustrating how variables change their values at every stage in the

Multiple stacks in a single array, implement multiple stacks in an array an...

implement multiple stacks in an array and write different algorithms to perform operations on it

Ruby implements range of t abstract data type, Ruby implements Range of T A...

Ruby implements Range of T Abstract data type Ruby implements Range of T ADT in its Range class. Elements of carrier set are represented in Range instances by recording interna

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd