Prims algorithm, Data Structure & Algorithms

Assignment Help:

Prim's algorithm employs the concept of sets. Rather than processing the graph by sorted order of edges, this algorithm processes the edges within the graph randomly by building up disjoint sets.

It employs two disjoint sets A and A. Prim's algorithm works by iterating through the nodes and then determining the shortest edge from the set A to that of set A (that means outside A), followed by the adding up the node to the new graph. While all the nodes are processed, we have a minimum cost spanning tree.

Instead building a sub-graph by inserting one edge at a time, Prim's algorithm builds tree one vertex at a time.

The steps in Prim's algorithm are as:

Consider G be the graph having n vertices for which minimum cost spanning tree is to be made.

Consider T be the minimum spanning tree.

consider T be a single vertex x.

while (T has fewer than n vertices)

{

find the smallest edge connecting T through G-T

add it to T

}

Let the graph of Figure.  And another Figure shows the various steps involved in the construction of Minimum Cost Spanning Tree of graph of this Figure

2433_Prims Algorithm.png

Figure: Construction of Minimum Cost Spanning Tree for the Graph of Figure by application of Prim's algorithm

The following are several steps in the construction of MST for the graph of Figure via Prim's algorithm.

Step 1:  We start along a single vertex (node). Now the set A has this single node and set A has rest of the nodes. Add the edge along the lowest cost from A to A. The edge along cost 4 is added.

Step 2: Lowest cost path through shaded portion of the graph to the rest of the graph (edge along cost 3) is chosen and added to MST.

Step 3: Lowest cost path through shaded portion of the graph to the rest of the graph (edge with cost 6) is chosen and inserted to MST.

Step 4: Lowest cost path from shaded portion of graph to the rest of the graph (edge along cost 73) is chosen and added to MST.

Step 5: The next lowest cost edge to the set not in MST is 8 but makes a cycle. So, it is discarded. The next lowest cost edge 9 is inserted. Now the MST has all the vertices of the graph. This results in the MST of the original graph.

Comparison of Kruskal's algorithm & Prim's algorithm

 

Kruskal's algorithm

Prim's algorithm

Principle

Based on generic minimum cost

spanning tree algorithms

A special case of generic minimum

cost spanning tree algorithm. Operates like Dijkstra's algorithm for finding shortest path in a graph.

Operation

Operates on a single set of

edges in the graph

Operates on two disjoint sets of

edges in the graph

Running time

O(E log E) where E is the

number of edges in the graph

O(E log V), which is

asymptotically same as Kruskal's algorithm

From the above comparison, it might be observed that for dense graphs with more number of edges for a given number of vertices, Prim's algorithm is more efficient.


Related Discussions:- Prims algorithm

Different ways for representing s graph, W h at are the different ways by...

W h at are the different ways by which we can represent graph?  Represent the graph drawn below using those ways.     T he d iff e r e nt w a y s by

Algorithm for dfs, Step 1: Choose a vertex in the graph and make it the sou...

Step 1: Choose a vertex in the graph and make it the source vertex & mark it visited. Step 2: Determine a vertex which is adjacent to the source vertex and begun a new search if

Inorder traversal, Inorder traversal: The left sub tree is visited, then t...

Inorder traversal: The left sub tree is visited, then the node and then right sub-tree. Algorithm for inorder traversal is following: traverse left sub-tree visit node

A full binary tree with 2n+1 nodes, A full binary tree with 2n+1 nodes have...

A full binary tree with 2n+1 nodes have n non-leaf nodes

Define about the structure - container, Define about the Structure - Contai...

Define about the Structure - Container - Some containers hold elements in some sort of structure, and some don't. Containers with no structure include bags and sets. Containe

frequenty count of function, Ask question find frequency count of function...

Ask question find frequency count of function- {for(i=1;i {for(j=1;j {for(k=1;k } } }

Define spanning tree, Define Spanning Tree A Spanning Tree of a connect...

Define Spanning Tree A Spanning Tree of a connected graph is its linked acyclic sub graph (i.e., a tree) that having all the vertices of the graph.

Explain backtracking, Explain Backtracking The  principal idea is to co...

Explain Backtracking The  principal idea is to construct solutions single component  at a time  and evaluate such  partially constructed candidates as follows. If a partiall

Acyclic graphs, Acyclic Graphs In a directed graph a path is said to fo...

Acyclic Graphs In a directed graph a path is said to form a cycle is there exists a path (A,B,C,.....P) such that A = P. A graph is called acyclic graph if there is no cycle in

Programs, Develop a program that accepts the car registration( hint: LEA 43...

Develop a program that accepts the car registration( hint: LEA 43242010)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd