Powerset construction, Theory of Computation

Assignment Help:

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′0. Since they cannot be reached from Q′0 there is no path from Q′0 to a state in F′ which passes through them and they can be deleted from the automaton without changing the language it accepts. In practice it is much easier to build Q′ as needed, only including those state sets that actually are needed.

To see how this works, lets carry out an example. For maximum generality, let's start with the NFA with ε-transitions given above, repeated here:

1876_Powerset Construction.png

Because it is simpler to write the transition function (δ) out as a table than it is to write out the transition relation (T) as a set of tuples, we will work with the δ representation. When given a transition graph of an NFA with ε-transitions like this there are 6 steps required to reduce it to a DFA:

1. Write out the transition function and set of ?nal states of the NFA.

2. Convert it to an NFA without ε-transitions.

(a) Compute the ε-Closure of each state in the NFA.

(b) Compute the transition function of the equivalent NFA without ε-transitions.

(c) Compute the set of ?nal states of the equivalent NFA without ε- transitions.


Related Discussions:- Powerset construction

Differentiate between dfa and nfa, Differentiate between DFA and NFA. Conve...

Differentiate between DFA and NFA. Convert the following Regular Expression into DFA. (0+1)*(01*+10*)*(0+1)*. Also write a regular grammar for this DFA.

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Can you help me in automata questions, i have some questions in automata, c...

i have some questions in automata, can you please help me in solving in these questions?

Kleene closure, One might assume that non-closure under concatenation would...

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

Emptiness problem, The Emptiness Problem is the problem of deciding if a gi...

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

Notes, write short notes on decidable and solvable problem

write short notes on decidable and solvable problem

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd