Power rule, Mathematics

Assignment Help:

Power rule: d(xn)/dx = nxn-1

There are really three proofs which we can provide here and we are going to suffer all three here therefore you can notice all of them.

The proof of this theorem will work for any real number n. Though, this does suppose that you've read most of the previous section and so must only be read after you have gone during the whole section.

Proof

In this proof we no longer require to confine n to be a positive integer. This can here be any real number. Though, this proof also supposes which you have read all the way throughout previous section. In particular this requires both Implicit Differentiation and Logarithmic Differentiation. If you have not read, and know, these sections so it proof will not make any sense to your understanding.

Therefore, to find set up for logarithmic differentiation let's first name

 y = xn

 after that take the log of both sides and simplify the right side by using logarithm properties and after that differentiate by using implicit differentiation.

 ln y = ln xn

ln y = n ln x

y′/y = n (1/x)

At last, all we require to do is solving for y′ and after that substitute into for y.

y' = y(n/x) = xn(n/x) = nxn-1

Before going onto the subsequent proof, let's consider that in all three proofs we did need the exponent n, be a number which is integer, any real number in this proof.

At last, in the third proof we would have found various derivatives if n had not been a constant.

It is significant as people will frequently misuse the power rule and utilize this even while the exponent is not a number or/and the base is not a variable.


Related Discussions:- Power rule

Ampltude and period, find the amplitude and period of y=3 sin 2 pi x

find the amplitude and period of y=3 sin 2 pi x

Geometry., solve for y given that 3sin^2 y+cos y-1=0 for 0y360

solve for y given that 3sin^2 y+cos y-1=0 for 0y360

Tangent lines, Tangent Lines : The first problem which we're going to stud...

Tangent Lines : The first problem which we're going to study is the tangent line problem.  Before getting into this problem probably it would be best to define a tangent line.

Statistics, How do I choose a distribution test for a sample size of 60? Pr...

How do I choose a distribution test for a sample size of 60? Probability of rolling a 4 on a six sided die.

Descrbe about arithmetic and geometric sequences, Descrbe about Arithmetic ...

Descrbe about Arithmetic and Geometric Sequences? When numbers are listed according to a particular pattern, we call the list a sequence. In a sequence, the numbers are separat

Definition of a function, Definition of a Function Now we need to move...

Definition of a Function Now we need to move into the second topic of this chapter.  Before we do that however we must look a quick definition taken care of.

Polynomial : f(x).f(1/x), A polynomial satisfies the following relation f(x...

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3) Ans) The required polynomial is x^5 +1. This polynomial satisfies the condition state

Continuous uniform distribution, Continuous Uniform Distribution Consid...

Continuous Uniform Distribution Consider the interest earned on a bank deposit. Let X equal the value after the decimal point. (Assume no rounding off to the nearest paise.) Fo

Find relative extrema f ( x ) = x2 on [-2, Recognizes the absolute extrema...

Recognizes the absolute extrema & relative extrema for the given function.  f ( x ) = x 2        on                  [-2, 2] Solution Following is the graph for this fun

Sums and differences of cubes and other odd powers, Sums and Differences of...

Sums and Differences of Cubes (and other odd powers)? You can factor a sum or difference of cubes using the formulas a 3 - b 3 = (a - b )(a 2 + ab + b 2 ) and a 3 + b 3 =

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd