Power rule, Mathematics

Assignment Help:

Power rule: d(xn)/dx = nxn-1

There are really three proofs which we can provide here and we are going to suffer all three here therefore you can notice all of them.

The proof of this theorem will work for any real number n. Though, this does suppose that you've read most of the previous section and so must only be read after you have gone during the whole section.

Proof

In this proof we no longer require to confine n to be a positive integer. This can here be any real number. Though, this proof also supposes which you have read all the way throughout previous section. In particular this requires both Implicit Differentiation and Logarithmic Differentiation. If you have not read, and know, these sections so it proof will not make any sense to your understanding.

Therefore, to find set up for logarithmic differentiation let's first name

 y = xn

 after that take the log of both sides and simplify the right side by using logarithm properties and after that differentiate by using implicit differentiation.

 ln y = ln xn

ln y = n ln x

y′/y = n (1/x)

At last, all we require to do is solving for y′ and after that substitute into for y.

y' = y(n/x) = xn(n/x) = nxn-1

Before going onto the subsequent proof, let's consider that in all three proofs we did need the exponent n, be a number which is integer, any real number in this proof.

At last, in the third proof we would have found various derivatives if n had not been a constant.

It is significant as people will frequently misuse the power rule and utilize this even while the exponent is not a number or/and the base is not a variable.


Related Discussions:- Power rule

Trapezoid rule - approximating definite integrals, Trapezoid Rule - Approxi...

Trapezoid Rule - Approximating Definite Integrals For this rule we will do similar set up as for the Midpoint Rule. We will break up the interval [a, b] into n subintervals of

Logarithm, I need help with one logarithm problem

I need help with one logarithm problem

Find the integral of a function, We want to find the integral of a function...

We want to find the integral of a function at an arbitrary location x from the origin. Thus, where I(x=0) is the value of the integral for all times less than 0. (Essenti

Evaluate the measure of the larger angle, Two angles are complementary. The...

Two angles are complementary. The calculate of one angle is four times the measure of the other. Evaluate the measure of the larger angle. a. 36° b. 72° c. 144° d. 18°

What is exponents values, What is Exponents values? Exponents were inve...

What is Exponents values? Exponents were invented as a quick way to show that you are multiplying a number by itself several times. It's too much trouble to write something

Vector functions - three dimensional space, Vector Functions We very f...

Vector Functions We very firstly saw vector functions back while we were looking at the Equation of Lines. In that section we talked about them as we wrote down the equation o

Evaluate the log function, Evaluate the log function: Calculate 3log 1...

Evaluate the log function: Calculate 3log 10 2. Solution: Rule 3.             log  (A n ) = nlog b   A 3log 10  2 = log 10 (2 3 ) = log 10   8 = 0.903

Quadratic equation, What do we mean by the roots of a quadratic equation ?

What do we mean by the roots of a quadratic equation ?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd