Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable.
"Positiveness Problem".
Note that each instance of the Positiveness Problem is a regular language. (Each instance itself is, not the set of solved instances.) Clearly, we cannot take the set of strings in the language to be our instance, (since, in general, this is likely to be in?nite in size. But we have at least two means of specifying any regular language using ?nite objects: we can give a Finite State Automaton that recognizes the language as a ?ve-tuple, each component of which is ?nite, (or, equivalently, the transition graph in some other form) or we can give a regular expression. Since we have algorithms for converting back and forth between these two forms, we can choose whichever is convenient for us. In this case, lets assume we are given the ?ve-tuple. Since we have an algorithm for converting NFAs to DFAs as well, we can also assume, without loss of generality, that the automaton is a DFA.
A solution to the Positiveness Problem is just "True" or "False". It is a decision problem a problem of deciding whether the given instance exhibits a particular property. (We are familiar with this sort of problem. They are just our "checking problems"-all our automata are models of algorithms for decision problems.) So the Positiveness Problem, then, is just the problem of identifying the set of Finite State Automata that do not accept the empty string. Note that we are not asking if this set is regular, although we could. (What do you think the answer would be?) We are asking if there is any algorithm at all for solving it.
1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization
Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a
The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular
Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn
When an FSA is deterministic the set of triples encoding its edges represents a relation that is functional in its ?rst and third components: for every q and σ there is exactly one
The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l
Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .
We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also
Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd