Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable.
"Positiveness Problem".
Note that each instance of the Positiveness Problem is a regular language. (Each instance itself is, not the set of solved instances.) Clearly, we cannot take the set of strings in the language to be our instance, (since, in general, this is likely to be in?nite in size. But we have at least two means of specifying any regular language using ?nite objects: we can give a Finite State Automaton that recognizes the language as a ?ve-tuple, each component of which is ?nite, (or, equivalently, the transition graph in some other form) or we can give a regular expression. Since we have algorithms for converting back and forth between these two forms, we can choose whichever is convenient for us. In this case, lets assume we are given the ?ve-tuple. Since we have an algorithm for converting NFAs to DFAs as well, we can also assume, without loss of generality, that the automaton is a DFA.
A solution to the Positiveness Problem is just "True" or "False". It is a decision problem a problem of deciding whether the given instance exhibits a particular property. (We are familiar with this sort of problem. They are just our "checking problems"-all our automata are models of algorithms for decision problems.) So the Positiveness Problem, then, is just the problem of identifying the set of Finite State Automata that do not accept the empty string. Note that we are not asking if this set is regular, although we could. (What do you think the answer would be?) We are asking if there is any algorithm at all for solving it.
The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa
These assumptions hold for addition, for instance. Every instance of addition has a unique solution. Each instance is a pair of numbers and the possible solutions include any third
Prove that Language is non regular TRailing count={aa ba aaaa abaa baaa bbaa aaaaaa aabaaa abaaaa..... 1) Pumping Lemma 2)Myhill nerode
Exercise: Give a construction that converts a strictly 2-local automaton for a language L into one that recognizes the language L r . Justify the correctness of your construction.
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea
This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But
Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1's encountered is even or odd.
Differentiate between DFA and NFA. Convert the following Regular Expression into DFA. (0+1)*(01*+10*)*(0+1)*. Also write a regular grammar for this DFA.
The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w
As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd