Positive integer, Mathematics

Assignment Help:

(a)   Specify that  the sum of  the degrees  of all vertices of a graph  is double the number of edges  in  the graph.                           

(b)  Let G be a non directed graph with L2 edges. If G has 6 vertices every of degree 3 and the rest   have degree less than 3, what is the minimum number of vertices G can have?                                                                                        

(c) Explain the truth value for each of the following statements:                     

(i) 4 + 3 = 6 AND 3 + 3 = 6
(ii) 5 + 3 = 8 OR 3 + 1 = 5

(d) Let f(n)= 5 f(n/ 2) + 3 and f(1) = 7. Find f(2k) where k is a positive integer. Also estimate f(n)   if f is an increasing function.                      

(e)  Show the sufficient conditions of Dirac and Ore for a graph to be  Hamiltonian. Give an instance of  a graph  that  does not  satisfy Dirac's condition, but satisfies  Ore's condition.                                                                                    

(f) Measure -25 + 75 using 2's complement.         


Related Discussions:- Positive integer

Geometry, what is sin, cos, and tan?

what is sin, cos, and tan?

Which number falls among 5.56 and 5.81, Which number falls among 5.56 and 5...

Which number falls among 5.56 and 5.81? If you add a zero to the end of 5.6 to get 5.60, it is simpler to see that 5.56

Draw a common graph y = sin ( x ), Graph y = sin ( x ) Solution : As a...

Graph y = sin ( x ) Solution : As along the first problem in this section there actually isn't a lot to do other than graph it.  Following is the graph. From this grap

Evaluate the infinite limits of given limits, Evaluate following limits. ...

Evaluate following limits. Solution Therefore we will taking a look at a couple of one-sided limits in addition to the normal limit here. In all three cases notice

What is a lattice, What is a lattice? Which of the following graphs are lat...

What is a lattice? Which of the following graphs are lattice and why? Ans:  Let (L, ≤) be a poset. If each subset {x, y} consisting of any two elements of L, comprises a glb (I

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd