Population problem - nonhomogeneous systems, Mathematics

Assignment Help:

The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single population and frequently involved some form of predation. The problem in this section was we supposed that the amount of predation would be constant. It though clearly won't be the case in most situations. The amount of predation will depend upon the population of the predators and the population of the predators will partially depend as least, upon the population of the prey.

Therefore, in order to more exactly (well at least more correct than what we originally did) we truly require to set up a model that will cover both populations, both the prey and the predator. These kinds of problems are usually termed as predator-prey problems. Now there are the assumptions as we'll make while we build up this model.

1. The prey will grow at a rate which is proportional to its recent population if there are no predators.

2. The population of predators will reduce at a rate proportional to its present population if there is no prey.

3. The number of encounters in between prey and predator will be proportional to the product of the populations.

4. Each encounter among the predator and prey will raise the population of the predator and reduce the population of the prey.


Related Discussions:- Population problem - nonhomogeneous systems

Proof f(x) + g(x) dx = f(x) dx + g(x) dx anti-derivation, Proof of: ...

Proof of: ∫ f(x) + g(x) dx = ∫ f(x) dx + ∫g(x) dx It is also a very easy proof. Assume that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of

Inverse of a matrix, Explain Inverse of a matrix, need assignment help.

Explain Inverse of a matrix, need assignment help.

Algebra, Multiple response question.Zack puts a mug of water ni his microwa...

Multiple response question.Zack puts a mug of water ni his microwave oven. He knows that the final temperature of the water will be a function of the number of seconds he heats the

How to join as maths expert, Sir, I am a Maths teacher from kolkata,India....

Sir, I am a Maths teacher from kolkata,India.i want to join your website as Maths'' expert.Please guide me as to how to join your website and earn some money. I will be really grat

Applications of derivatives, Applications of derivatives : At last, let's ...

Applications of derivatives : At last, let's not forget about our applications of derivatives. Example    Assume that the amount of air in a balloon at any time t is specified

How many multiplication required to calculate matrix product, (a) Assume th...

(a) Assume that A is a m 1 ×m 2 matrix and B is a m 2 ×m 3 matrix. How many multiplications are required to calculate the matrix product AB? (b) Given that A 1 is a 20 × 50 m

Transition matrix for the probabilitiy, Suppose research on three major cel...

Suppose research on three major cell phones companies revealed the following transition matrix for the probability that a person with one cell phone carrier switches to another.

How many people should she expect not to show, Laura is planning her weddin...

Laura is planning her wedding. She expects 230 people to attend the wedding, but she has been told that around 5% typically don't show. About how many people should she expect not

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd