Population problem - nonhomogeneous systems, Mathematics

Assignment Help:

The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single population and frequently involved some form of predation. The problem in this section was we supposed that the amount of predation would be constant. It though clearly won't be the case in most situations. The amount of predation will depend upon the population of the predators and the population of the predators will partially depend as least, upon the population of the prey.

Therefore, in order to more exactly (well at least more correct than what we originally did) we truly require to set up a model that will cover both populations, both the prey and the predator. These kinds of problems are usually termed as predator-prey problems. Now there are the assumptions as we'll make while we build up this model.

1. The prey will grow at a rate which is proportional to its recent population if there are no predators.

2. The population of predators will reduce at a rate proportional to its present population if there is no prey.

3. The number of encounters in between prey and predator will be proportional to the product of the populations.

4. Each encounter among the predator and prey will raise the population of the predator and reduce the population of the prey.


Related Discussions:- Population problem - nonhomogeneous systems

Pemdas, what is the answer using pemdas (32 divided into 4)+3

what is the answer using pemdas (32 divided into 4)+3

Reduction formulae, Reduction formulae Script for Introduction: ...

Reduction formulae Script for Introduction: First let us know what is meant by reduction formula. In simple words,                 A formula which expressess(or re

Multiples, The sum of the smallest and largest multiples of 8 up to 60 is?

The sum of the smallest and largest multiples of 8 up to 60 is?

Differential equation - maple, 1. Consider the following differential equat...

1. Consider the following differential equation with initial conditions: t 2 x'' + 5 t x' + 3 x = 0, x(1) = 3, x'(1) = -13. Assume there is a solution of the form: x (t) = t

Pde, i find paper that has sam my homework which i need it, in you website...

i find paper that has sam my homework which i need it, in you website , is that mean you have already the solution of that ?

Mental math, i dint get how to do math promblems

i dint get how to do math promblems

Ratio math help, Mr.Tanaka has 56 students in his choir the ratio of boys ...

Mr.Tanaka has 56 students in his choir the ratio of boys to girls is 3:4 how many boys and girls are in his class

Permatuation and combination problem, A,B,C are natural numbers and are in ...

A,B,C are natural numbers and are in arithmetic progressions and a+b+c=21.then find the possible values for a,b,c Solution) a+b+c=21 a+c=2b 3b=21 b=7 a can be 1,2,3,4,5,6 c c

Example of partial fraction decomposition, Example of Partial Fraction Deco...

Example of Partial Fraction Decomposition Evaluate the following integral. ∫ (3x+11 / x 2 -x-6) (dx) Solution: The 1 st step is to factor the denominator so far as

Pearson sucess, do you have a decimal place value chart

do you have a decimal place value chart

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd