Population problem - nonhomogeneous systems, Mathematics

Assignment Help:

The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single population and frequently involved some form of predation. The problem in this section was we supposed that the amount of predation would be constant. It though clearly won't be the case in most situations. The amount of predation will depend upon the population of the predators and the population of the predators will partially depend as least, upon the population of the prey.

Therefore, in order to more exactly (well at least more correct than what we originally did) we truly require to set up a model that will cover both populations, both the prey and the predator. These kinds of problems are usually termed as predator-prey problems. Now there are the assumptions as we'll make while we build up this model.

1. The prey will grow at a rate which is proportional to its recent population if there are no predators.

2. The population of predators will reduce at a rate proportional to its present population if there is no prey.

3. The number of encounters in between prey and predator will be proportional to the product of the populations.

4. Each encounter among the predator and prey will raise the population of the predator and reduce the population of the prey.


Related Discussions:- Population problem - nonhomogeneous systems

Design a game strategy involves process of learning maths, Doing these sums...

Doing these sums initially in this way helps children see why they carry over numbers to the next column. You may like to devise some related activities now. , EI) Give activ

Logarithmic function:solve for x: 4 log x2, Solve for x: 4 log x = log (15 ...

Solve for x: 4 log x = log (15 x 2 + 16) Solution:              x 4 - 15 x 2 - 16 = 0                (x 2 + 1)(x 2 - 16) = 0                x = ± 4   But log x is

Evaluate this integral value, The base of a right cylinder is the circle in...

The base of a right cylinder is the circle in the xy -plane with centre O and radius 3 units. A wedge is obtained by cutting this cylinder with the plane through the y -axis in

upper and lower limits, A critical dimension of the service quality of a c...

A critical dimension of the service quality of a call center is the wait time of a caller to get to a sales representative. Periodically, random samples of 6 customer calls are mea

Interpretation of the second derivative, Interpretation of the second deriv...

Interpretation of the second derivative : Now that we've discover some higher order derivatives we have to probably talk regarding an interpretation of the second derivative. I

Fundamental theorem of integral facts , Fundamental Theorem of Calculus, Pa...

Fundamental Theorem of Calculus, Part II  Assume f(x) is a continuous function on [a,b] and also assume that F(x) is any anti- derivative for f(x). Hence, a ∫ b f(x) dx =

Quantitative Techniques, The following table given the these scores and sal...

The following table given the these scores and sales be nine salesman during last one year in a certain firm: text scores sales (in 000''rupees) 14 31 19

Parameters of the poisson mixture model, Using R function nlm and your code...

Using R function nlm and your code from Exercise E1.2, write an R function called pois.mix.mle to obtain MLEs of the parameters of the Poisson mixture model.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd