Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The next kind of problem seems as the population problem. Back in the first order modeling section we looked at several population problems. In such problems we noticed a single population and frequently involved some form of predation. The problem in this section was we supposed that the amount of predation would be constant. It though clearly won't be the case in most situations. The amount of predation will depend upon the population of the predators and the population of the predators will partially depend as least, upon the population of the prey.
Therefore, in order to more exactly (well at least more correct than what we originally did) we truly require to set up a model that will cover both populations, both the prey and the predator. These kinds of problems are usually termed as predator-prey problems. Now there are the assumptions as we'll make while we build up this model.
1. The prey will grow at a rate which is proportional to its recent population if there are no predators.
2. The population of predators will reduce at a rate proportional to its present population if there is no prey.
3. The number of encounters in between prey and predator will be proportional to the product of the populations.
4. Each encounter among the predator and prey will raise the population of the predator and reduce the population of the prey.
The angle of elevation of the top of a tower standing on a horizontal plane from a point A is α .After walking a distance d towards the foot of the tower the angle of elevation is
give examples and solutions on my topic
One coin is tossed thrice. what will be the probability of getting neither 3 heads nor 3 tails
If Var(x) = 4, find Var (3x+8), where X is a random variable. Var (ax+b) = a 2 Var x Var (3x+8) = 3 2 Var x = 36
y=3x^2+12+11
We want to find the integral of a function at an arbitrary location x from the origin. Thus, where I(x=0) is the value of the integral for all times less than 0. (Essenti
how do you find the distance between the sun and earth
16 times 4
Explain the rules of Divisibility ? Divisible by 2: If the last digit is a 0, 2, 4, 6, or 8, the number is evenly divisible by 2. Divisible by 2 Not
Write down the equation of the line which passes through the points (2, -1, 3) and (1, 4, -3). Write all three forms of the equation of the line. Solution To do the above
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd