Polynomial time algorithm - first order query, Mathematics

Assignment Help:

For queries Q1 and Q2, we say Q1 is contained in Q2, denoted Q1 ⊆ Q2, iff Q1 (D) ⊆ Q2(D) for every database D.

  • The container problem for a fixed Query Q0 is the following decision problem: Given a query Q, decide whether Q0 ⊆ Q.
  • The containee problem for a fixed query Q0 is the following decision problem: Given a query Q, decide whether Q ⊆ Q0.

Formally prove or disprove the following statements:

(a) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the container problem for Q0 and for given conjunctive queries Q.

(b) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the container problem for Q0 and for given conjunctive queries Q that can be obtained from Q0 by adding some atoms.

(c) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the containee problem for Q0 and for given conjunctive queries Q.

(d) For every first-order Query Q0, there is an algorithm to decide the containee problem for Q0 and for given first-order queries Q. To prove a statement, sketch an algorithm, along with an argument why it is polynomial, if possible. To disprove it, provide an M-hardness or undecidability proof.


Related Discussions:- Polynomial time algorithm - first order query

Determine the inverse function f ( x ), Given f ( x ) = 3x - 2 determine ...

Given f ( x ) = 3x - 2 determine     f -1 ( x ) . Solution Now, already we know what the inverse to this function is as already we've done some work with it.  Though, it

Volume., what is the volume of new ipad pro box

what is the volume of new ipad pro box

surfaces z + |y| = 1, Describe and sketch the surfaces z + |y| = 1 and (x ...

Describe and sketch the surfaces z + |y| = 1 and (x   2) 2 y + z 2 = 0.

Hcf, the length of three pieces of ropes are 140cm,150cm and 200cm.what is ...

the length of three pieces of ropes are 140cm,150cm and 200cm.what is the greatest possible length to measure the given pieces of a rope?

Solution to a differential equation, A solution to a differential equation ...

A solution to a differential equation at an interval α Illustration 1:   Show that y(x) = x -3/2 is a solution to 4x 2 y′′ + 12xy′ + 3 y = 0 for x > 0. Solution : We'll

Determine the tangent line to f ( x ) = 15 - 2x2 at x = 1, Determine the t...

Determine the tangent line to f ( x ) = 15 - 2x 2   at x = 1. Solution : We know from algebra that to determine the equation of a line we require either two points onto the li

Fractions, is 1 and 1/2+2 and 1/7 3 and 9/4

is 1 and 1/2+2 and 1/7 3 and 9/4

Find out solutions to second order differential equations, Find out some so...

Find out some solutions to y′′ - 9 y = 0 Solution  We can find some solutions here simply through inspection. We require functions whose second derivative is 9 times the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd