Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
For queries Q1 and Q2, we say Q1 is contained in Q2, denoted Q1 ⊆ Q2, iff Q1 (D) ⊆ Q2(D) for every database D.
Formally prove or disprove the following statements:
(a) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the container problem for Q0 and for given conjunctive queries Q.
(b) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the container problem for Q0 and for given conjunctive queries Q that can be obtained from Q0 by adding some atoms.
(c) For every conjunctive query Q0, there is a polynomial-time algorithm to decide the containee problem for Q0 and for given conjunctive queries Q.
(d) For every first-order Query Q0, there is an algorithm to decide the containee problem for Q0 and for given first-order queries Q. To prove a statement, sketch an algorithm, along with an argument why it is polynomial, if possible. To disprove it, provide an M-hardness or undecidability proof.
what will the introduction be ???
#question.Mai is 3 years ypunger than twice the age of her brother .If b represents .
Hi need a help for marketing strategic assignment Could you able to help me???
Maths For Fun : Often, when I have time on my hands, I try to solve interesting mathematical questions of the following kind. Sometimes my friends and I create the problems, and
|a.x|=1 where x = i-2j+2k then calculate a
Assume that Y 1 (t) and Y 2 (t) are two solutions to (1) and y 1 (t) and y 2 (t) are a fundamental set of solutions to the associated homogeneous differential equation (2) so, Y
Before proceeding along with in fact solving systems of differential equations there's one topic which we require to take a look at. It is a topic that's not at all times taught in
Larry purchased 3 pairs of pants for $24 each or have 5 shirts for $18 each. How much did Larry spend? Divide the miles through the time to find the rate; 3,060 ÷ 5 = 612 mph.
divid
what is the least number of faces and bases the paperweight could have?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd