Polynomial : f(x).f(1/x), Mathematics

Assignment Help:

A polynomial satisfies the following relation f(x).f(1/x)= f(x)+f(1/x). f(2) = 33. fIND f(3)

Ans) The required polynomial is x^5 +1.

This polynomial satisfies the condition stated above.

Therefore, f[3] = 244.


Related Discussions:- Polynomial : f(x).f(1/x)

Example of line - common polar coordinate graphs, Example of line - Common ...

Example of line - Common Polar Coordinate Graphs Example:  Graph θ = 3Π, r cos θ = 4 and r sin θ = -3 on similar axis system. Solution There actually isn't too much to

Share and dividend, #a invests Rs 15000IN COMPANY PAYING 10%WHEN Rs100 SHAR...

#a invests Rs 15000IN COMPANY PAYING 10%WHEN Rs100 SHARE IS SOLD AT A PREMIUM OF Rs 20 after a yearASOLD SHARES AT Rs80 EACHAND INVESTEDPROCEEDS IN Rs75SHARES SELLING AT Rs 100 WZI

Dot product - vector, Dot Product- Vector The other topic for discu...

Dot Product- Vector The other topic for discussion is that of the dot product.  Let us jump right into the definition of dot product. There is given that the two vectors a

Tutor, I AM A EXPERT OF MATHEMATICS.CAN I BECOME A TUTOR? PLEASE TELL ME SO...

I AM A EXPERT OF MATHEMATICS.CAN I BECOME A TUTOR? PLEASE TELL ME SOON.

Determine the exterior angle, Using the sketch below and the fact that ∠A +...

Using the sketch below and the fact that ∠A + ∠B + ∠C + ∠D = 325, Determine m∠E.   a. 81° b. 35° c. 25° d. 75° b. The addition of the measures of the exterio

Applications of series - differential equations, Series Solutions to Differ...

Series Solutions to Differential Equations Here now that we know how to illustrate function as power series we can now talk about at least some applications of series. There ar

Critical point of exponential functions and trig functions, Critical point ...

Critical point of exponential functions and trig functions, Let's see some examples that don't just involve powers of x. Example:  find out all the critical points for the

Proof f(x) + g(x) dx = f(x) dx + g(x) dx anti-derivation, Proof of: ...

Proof of: ∫ f(x) + g(x) dx = ∫ f(x) dx + ∫g(x) dx It is also a very easy proof. Assume that F(x) is an anti-derivative of f(x) and that G(x) is an anti-derivative of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd