Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Polar Coordinates
Till this point we've dealt completely with the Cartesian (or Rectangular, or x-y) coordinate system. Though, as we will see, this is not all time the easiest coordinate system to work in. Thus, in this section we will start looking at the polar coordinate system.
Coordinate systems are actually nothing much more than a way to describe a point in space. For example in the Cartesian coordinate system at point is specified the coordinates (x,y) and we use this to describe the point by starting at the origin and after that moving x units horizontally followed by y units vertically. This is illustrated in the diagram below.
Though, this is not the only way to define a point in two dimensional spaces. In place of moving vertically and horizontally from the origin to obtain to the point we could in place of go straight out of the origin till we hit the point and then ascertain the angle this line makes with the positive x-axis. We could then make use of the distance of point from the origin and the amount or value we required to rotate from the positive x-axis as the coordinates of the point. This is illustrated in the diagram below.
Coordinates in this form are called polar coordinates.
This topic is specified its own section for a couple of purposes. Firstly, understanding direction fields and what they tell us regarding a differential equation as well as its sol
A palm tree of heights 25m is broken by storm in such a way that its top touches the ground at a distance of 5m from its root,but is not separated from the tree.Find the height at
Derive the probability distribution of the completion times: a. The following probability distributions relate to the completion times, in weeks, T A and T B of two independ
1+8
Here we need to see the inverse of a matrix. Provided a square matrix, A, of size n x n if we can get the other matrix of similar size, B that, AB = BA = I n after that we call
An inground pool is pooring with water. The shallow end is 3 ft deep and gradually slopes to the deepest end, which is 10 ft deep. The width of the pool is 30 ft and the length is
(1 0 3 21 -1 1 -1 1) find A-1
Danielle requires knowing the distance around a basketball court. What geometry formula will she use? The perimeter of a rectangle is two times the length plus two times the wi
Find out the greater of two consecutive positive odd integers whose product is 143. Let x = the lesser odd integer and let x + 2 = the greater odd integer. Because product is a
Integrals Involving Quadratics To this point we have seen quite some integrals which involve quadratics. Example of Integrals Involving Quadratics is as follow: ∫ (x / x 2
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd