Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Polar Coordinates
Till this point we've dealt completely with the Cartesian (or Rectangular, or x-y) coordinate system. Though, as we will see, this is not all time the easiest coordinate system to work in. Thus, in this section we will start looking at the polar coordinate system.
Coordinate systems are actually nothing much more than a way to describe a point in space. For example in the Cartesian coordinate system at point is specified the coordinates (x,y) and we use this to describe the point by starting at the origin and after that moving x units horizontally followed by y units vertically. This is illustrated in the diagram below.
Though, this is not the only way to define a point in two dimensional spaces. In place of moving vertically and horizontally from the origin to obtain to the point we could in place of go straight out of the origin till we hit the point and then ascertain the angle this line makes with the positive x-axis. We could then make use of the distance of point from the origin and the amount or value we required to rotate from the positive x-axis as the coordinates of the point. This is illustrated in the diagram below.
Coordinates in this form are called polar coordinates.
5a^2b^2-5ab(6)
d
Q. lim x tends to 0 (5 tanx sinx upon x square) here ( ) this bracket indicates greatest integer function Ans: You can calculate the limit of this function using basic concept of
Before going to solving differential equations we must see one more function. Without Laplace transforms this would be much more hard to solve differential equations which involve
If angle between asymtotes of hyperbola x^2/a^2-y^2/b^=1 is 120 degrees and product of perpendicular drawn from foci upon its any tangent is 9. Then find the locus of point of inte
Example Reduce 24/36 to its lowest terms. 24/36=12/18=6/9=2/3. In the first step we divide the numerator and the denominator by 2. The fraction gets reduced
cos(x)y''+sin(x)y=2cos^3(x)sin(x)-1
Evaluate the given limit. Solution: In this question none of the earlier examples can help us. There's no factoring or simplifying to accomplish. We can't rationalize &
Determine a particular solution for the subsequent differential equation. y′′ - 4 y′ -12 y = 3e5t + sin(2t) + te4t Solution This example is the purpose that we've been u
Show that 571 is a prime number. Ans: Let x=571⇒√x=√571 Now 571 lies between the perfect squares of (23)2 and (24)2 Prime numbers less than 24 are 2,3,5,7,11,13,17,1
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd