Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Polar Coordinates
Till this point we've dealt completely with the Cartesian (or Rectangular, or x-y) coordinate system. Though, as we will see, this is not all time the easiest coordinate system to work in. Thus, in this section we will start looking at the polar coordinate system.
Coordinate systems are actually nothing much more than a way to describe a point in space. For example in the Cartesian coordinate system at point is specified the coordinates (x,y) and we use this to describe the point by starting at the origin and after that moving x units horizontally followed by y units vertically. This is illustrated in the diagram below.
Though, this is not the only way to define a point in two dimensional spaces. In place of moving vertically and horizontally from the origin to obtain to the point we could in place of go straight out of the origin till we hit the point and then ascertain the angle this line makes with the positive x-axis. We could then make use of the distance of point from the origin and the amount or value we required to rotate from the positive x-axis as the coordinates of the point. This is illustrated in the diagram below.
Coordinates in this form are called polar coordinates.
Uses of derivative in daily life with examples.
A water sprinkler operates in a circular pattern a distance of 10 ft. Evaluate the circumference of the spray? (π = 3.14) a. 31.4 ft b. 314 ft c. 62.8 ft d. 628 ft
Two trains leave two different cities 1,029 miles apart and head directly toward every other on parallel tracks. If one train is traveling at 45 miles per hour and the other at 53
Q. Define Degrees and Radians? Ans. Just as your height can be measured in meters or feet and your weight can be measured in pounds or kilograms, angles can be measured in
1+1
what is a liter
∫1/sin2x dx = ∫cosec2x dx = 1/2 log[cosec2x - cot2x] + c = 1/2 log[tan x] + c Detailed derivation of ∫cosec x dx = ∫cosec x(cosec x - cot x)/(cosec x - cot x) dx = ∫(cosec 2 x
Examples of Linear Equation Please provide me some Examples of Linear Equation?
Combination A combination is a group of times whether order is not significant. For a combination to hold at any described time it must comprise of the same items however i
how to prove Decidability Theorem of Logic
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd