Poisson regression, Advanced Statistics

Assignment Help:

Poisson regression

In case of Poisson regression we use ηi = g(µi) = log(µi) and a variance V ar(Yi) = φµi. The case φ = 1 corresponds to standard Poisson model. Poisson regression is used when the response to model is counts which typically follow a Poisson distribution. Examples include colony counts for bacteria or viruses, accidents, equipment failures, insurance claims, incidence of disease. Interest often lies in estimating a rate of incidence and determining its relationship to a set of explanatory variables. Again, an IRLS procedure is used to ?nd the MLE estimators of the β coeffcients. When we can not assume φ = 1, (this is the case of over- or under- dispersion discussed in McCullagh and Nelder (1989)), the iterative procedure is changed to so called "quasi-likelihood estimation". Finally in this section, we shall also mention shortly the extension of GLM to GAM.


Related Discussions:- Poisson regression

Find the expected value of perfect information, You may have the opportunit...

You may have the opportunity to buy some electronic components. These components may be reliable (1) or unreliable (2). The potential pro?ts are £10,000 if the components are rel

Epidemic curve, The plot of the number of cases of the disease against the ...

The plot of the number of cases of the disease against the time period. A large and sudden increase corresponds to an epidemic. The example of this is shown in the figure drawn bel

Explain non-response, Non-response is the term generally used for the fail...

Non-response is the term generally used for the failure to give the relevant information being collected in the survey. Poor response can be because of the variety of causes, for

Explain Geometric distribution, Geometric distribution: The probability di...

Geometric distribution: The probability distribution of the number of trials (N) before the first success in the sequence of Bernoulli trials. Specifically the distribution is can

Distribution free methods, The statistical methods for estimation and infer...

The statistical methods for estimation and inference which are based on a function of sample observations, probability distribution of which does not rely upon a complete speci?cat

Estimating functions, The functions of the data and the parameters of inter...

The functions of the data and the parameters of interest which can be brought in use to conduct inference about the parameters when full distribution of the observations is unknown

Partial least squares, Partial least squares is an alternative to the mult...

Partial least squares is an alternative to the multiple regressions which, in spite of using the original q explanatory variables directly, constructs the new set of k regressor v

EDUC 606, The GRE has a combined verbal and quantitative mean of 1000 and a...

The GRE has a combined verbal and quantitative mean of 1000 and a standard deviation of 200.

The breusch-pagan test, The Null Hypothesis - H0:  There is no heteroscedas...

The Null Hypothesis - H0:  There is no heteroscedasticity i.e. β 1 = 0 The Alternative Hypothesis - H1:  There is heteroscedasticity i.e. β 1 0 Reject H0 if Q = ESS/2 >

Student, the problem that demonstrates inference from two dependent samples...

the problem that demonstrates inference from two dependent samples uses hypothetical data from TB vaccinations and the number of new cases before and after vaccinations for cases o

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd