Poisson distribution function, Civil Engineering

Assignment Help:

Poisson distribution function:

Let XI, X2, ..., X,& b e n independently and identically distributed random variables each having the same cdf F ( x ). What is the pdf of the largest of the xi'?

Solution:

Let Y = maximum (XI, X2, ..., Xn, )

Since Y ≤ y implies Xl ≤ y, X2 ≤y, ..., Xn ≤ y, we have

Fy(y )= P(Y ≤ y) = P(XI ≤ y,X2 ≤ y, ..., Xn ≤ y )

= P(X1 ≤ y) P(X2 ≤ y) ... P(Xn ≤ y),

since XI, X2, ..., Xn, are independent

= {F(y)}n, since the cdf of each Xi is F(x).

 Hence the pdf of Y is

fy (y) = F'(y) = n{F(y)}n-1 f(y),

where f ( y ) = F'( y ) is the pdf of Xi.

6.2.2 The Method of Probability Density Function (Approach 2)

For a univariate continuous random variable x having the pdf' fx ( x ) and the cdf Fx (x), we have

F'x(x)= (d/dx ) dFx(x) or dFx(x) = fx (x) dx

In other words, differential dFx (x) represents the element of probability that X assumes a value in an infinitesimal interval of width dx in the neighbourhood of X = x.

For a one-to-one transformation y = g ( x ), there exists an inverse transformation x = g - 1 ( y ), so that under the transformation as x changes to y, dx changes to dg-1(y)/dy and

dF (x) = f(x) dx = fx (g-1(y))¦dg-1(y)/dy¦ dy

The absolute value of dg-1(y)/dy is taken because may be negative and fx ( x ) and d Fx ( x ) are always positive. As X, lying in an interval of width dx in the neighbourhood of X = x, changes to y, that lies in the corresponding interval of width dy in the neighbourhood of Y = y, the element of probability dFx ( x ) and dFy ( y ) remain the same where Fy ( y ) is 1 cdf of Y. Hence

dFy(y) = dFx(x) = fx(g-1(y)) ¦ dg-1(y)/dy¦ dy

and

fy(y) = d/dy Fy(y) = fx (g-1 (y)) ¦ dg-1(y)/dy¦                                         (6.2)

Equation (6.2) may be used to find the pdf of a one to one function of a random variable. The method could be generalized to the multivariate case to obtain the result that gives the joint pdf of transformed vector random variable Y under the one to one transformation Y - G ( X ) , in terms of the joint pdf of X The generalized result is stated below

fy(y) = fx(G-1 (y))1/¦J¦

where the usual notations and conventions for the Jacobian J = ¦ð y/ð x¦ are assumed

Remarks:

This technique is applicable hust to continuous random variables and only if the functions of random variable Y = G (X) define a one to one transformation of the region where the pdf of X is non zero.


Related Discussions:- Poisson distribution function

Why we need transition slabs in bridges, Q. Why we need Transition slabs in...

Q. Why we need Transition slabs in bridges? In a number of designs, transition slabs are provided on the approach to bridges. For example soils in embankment supporting the ro

Illustrate concept of filter design, Q. Illustrate Concept of filter design...

Q. Illustrate Concept of filter design? The material used for filter should satisfy the following normal criteria a. Filter material is more pervious than the base material

RAFTING, WHY RAFTING IS REQUIRED AND WHAT PRECAUTIONS SHOULD BE TAKEN DURIN...

WHY RAFTING IS REQUIRED AND WHAT PRECAUTIONS SHOULD BE TAKEN DURING RAFTING? AND WHAT IS THE ALTERNATE OF RAFTING.?

Tests on bricks, Tests on Bricks The following laboratory tests can be...

Tests on Bricks The following laboratory tests can be conducted on the bricks to find their suitability: 1.    Crushing strength 2.    Absorption 3.    Shape and size

Geodesy, what is the difference between geodesy and plane survey

what is the difference between geodesy and plane survey

Stress, Determine elongation because of self weight of bar:

Determine elongation because of self weight of bar:

Maintenance of terminal building, Maintenance of Terminal Building: A...

Maintenance of Terminal Building: All accessories such as lighting, water, sanitation, telephone and public address system should be maintained in a good condition. Disposal

Offset, what is the meaning of offset

what is the meaning of offset

Calculate the amount of waste, Calculate the Amount of Waste A municipa...

Calculate the Amount of Waste A municipal solid waste department plans to separate a portion of the ferrous metal, newsprint and cardboard from its MSW waste stream. The depart

Define abrasion - underwater inspection of bridge, Define Abrasion - underw...

Define Abrasion - underwater inspection of bridge? Deterioration of substructures by abrasion is caused by wave action, the velocity of the currents and the action of suspended

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd