Poisson distribution function, Civil Engineering

Assignment Help:

Poisson distribution function:

Let XI, X2, ..., X,& b e n independently and identically distributed random variables each having the same cdf F ( x ). What is the pdf of the largest of the xi'?

Solution:

Let Y = maximum (XI, X2, ..., Xn, )

Since Y ≤ y implies Xl ≤ y, X2 ≤y, ..., Xn ≤ y, we have

Fy(y )= P(Y ≤ y) = P(XI ≤ y,X2 ≤ y, ..., Xn ≤ y )

= P(X1 ≤ y) P(X2 ≤ y) ... P(Xn ≤ y),

since XI, X2, ..., Xn, are independent

= {F(y)}n, since the cdf of each Xi is F(x).

 Hence the pdf of Y is

fy (y) = F'(y) = n{F(y)}n-1 f(y),

where f ( y ) = F'( y ) is the pdf of Xi.

6.2.2 The Method of Probability Density Function (Approach 2)

For a univariate continuous random variable x having the pdf' fx ( x ) and the cdf Fx (x), we have

F'x(x)= (d/dx ) dFx(x) or dFx(x) = fx (x) dx

In other words, differential dFx (x) represents the element of probability that X assumes a value in an infinitesimal interval of width dx in the neighbourhood of X = x.

For a one-to-one transformation y = g ( x ), there exists an inverse transformation x = g - 1 ( y ), so that under the transformation as x changes to y, dx changes to dg-1(y)/dy and

dF (x) = f(x) dx = fx (g-1(y))¦dg-1(y)/dy¦ dy

The absolute value of dg-1(y)/dy is taken because may be negative and fx ( x ) and d Fx ( x ) are always positive. As X, lying in an interval of width dx in the neighbourhood of X = x, changes to y, that lies in the corresponding interval of width dy in the neighbourhood of Y = y, the element of probability dFx ( x ) and dFy ( y ) remain the same where Fy ( y ) is 1 cdf of Y. Hence

dFy(y) = dFx(x) = fx(g-1(y)) ¦ dg-1(y)/dy¦ dy

and

fy(y) = d/dy Fy(y) = fx (g-1 (y)) ¦ dg-1(y)/dy¦                                         (6.2)

Equation (6.2) may be used to find the pdf of a one to one function of a random variable. The method could be generalized to the multivariate case to obtain the result that gives the joint pdf of transformed vector random variable Y under the one to one transformation Y - G ( X ) , in terms of the joint pdf of X The generalized result is stated below

fy(y) = fx(G-1 (y))1/¦J¦

where the usual notations and conventions for the Jacobian J = ¦ð y/ð x¦ are assumed

Remarks:

This technique is applicable hust to continuous random variables and only if the functions of random variable Y = G (X) define a one to one transformation of the region where the pdf of X is non zero.


Related Discussions:- Poisson distribution function

#title., desirable properties in green concrete

desirable properties in green concrete

Maximum shear stress , the propane gas tank has an inner diameter of 1500mm...

the propane gas tank has an inner diameter of 1500mm and wall thickness of 15mm. If the wall is pressurized to 2MPa, determine the absolute maximum shear stress in the wall of tank

Ropeways, Ropeways: The system of ropeways consists of : (a) a cabl...

Ropeways: The system of ropeways consists of : (a) a cable suspended between towers, and (b) cars which move on the cable. Case with capacity upto 20 passengers is us

Define Statically indeterminate structures, Statically indeterminate struct...

Statically indeterminate structures a. Fall into two categories: 1.  Beam problems with additional supports/restraints 2.  Axial bar members subjected to temperature/forc

Timber, TIMBER Timber refers to wood utilized for construction works. A...

TIMBER Timber refers to wood utilized for construction works. Actually the word timber is derived from an old English word 'Timbrian' that means 'to build'. A tree that yields

Purpose of using capping layers in pavement construction, Q. Purpose of usi...

Q. Purpose of using capping layers in pavement construction? When California Bearing Ratio of subgrade is checked to be below a specific percentage (for example 5%), a capping

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd