Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Phenomenon - Fet operation:
For either improvement- or depletion-mode devices, at drain-to-source voltages very much less than gate-to-source voltages, changing the gate voltage will change the channel resistance, drain current will be proportional to drain voltage (referenced to source voltage). In this type of mode the FET operates such as a variable resistor and the FET is said to be operating in a linear modeor ohmic mode.
If drain-to-source voltage is gets increased, this creates a important asymmetrical change in the shape of the channel because of a gradient of voltage potential from source to drain. The shape of the inversion region turns "pinched-off" near the drain end of the channel. If drain-to-source voltage is raised further, the pinch-off point of the channel starts to move away from the drain in the direction of the source. The FET is supposed to be in saturation mode; a number of authors refer to it as active mode, for a better analogy along with bipolar transistor operating regions. The saturation mode, or the region in between the ohmic and saturation, is employed while amplification is required. The in-between region is occasionally considered to be part of the ohmic or linear region, even in which drain current is not approximately linear with drain voltage.
Although the conductive channel made by gate-to-source voltage no longer connects source to drain throughout saturation mode, from flowing the carriers are not blocked. Considering once again an n-channel device, a depletion region available in the p-type body that surrounding the conductive channel and drain and source regions. The electrons that have the channel are free to move out of the channel by the depletion region if attracted to the drain through drain-to-source voltage. The carriers' depletion region is free and comprises a resistance identical to silicon. Any type of rise of the drain-to-source voltage will increase the distance from drain to the pinch-off point, increasing resistance because of the depletion region proportionally to the applied drain-to-source voltage. This proportional change results in the drain-to-source current to remain comparatively fixed independent of changes to the drain-to-source voltage and quite different the linear mode operation. So in saturation mode, the FET acts like a constant-current source rather than like a resistor and can be used most efficiently as a voltage amplifier. In this type of case, the gate-to-source voltage ascertains the level of constant current by the channel.
Q. What do you mean by Amplifier block? An amplifier can be modeled as a two-port device, that is, a box with two pairs of terminals designated as input and output, as shown in
Q. How and why are the grounding and shielding used in electronic instruments? Sol. In electronic instruments grounding and Shielding techniques are available in order to a
Design and draw a circuit using the cascade system to operate two cylinders (A and B) which, on the operation of a start valve, produces the sequence A - B + B - A+. The cylinder
Q. A paraboloidal antenna has an aperture ef?ciency of 0.6 and a diameter D = 100λ at 6 GHz. Illumination by the feed is such that the beamwidths of the principal-plane secondary p
Hall Effect experiment: Prob. Write short note on Hall Effect and its applications. What properties of a semiconductor are determined from a Hall Effect experiment? Sol.
If a television station operates on UHF channel 20 (band 506-512 MHz), determine the station's visual-carrier frequency.
Q. Draw and explain the circuit of Wein bridge oscillator. Obtain the expressions for the (i) frequency of oscillation and (ii) condition for oscillation. Will oscillat
Q. A noninverting op-amp circuit and its closed-loop representation are given in Figure. Obtain an expression for the closed-loop transfer function H(ω) = Y (ω)/X(ω) and comment on
how fet transistor works in self bias
Q. Consider the three BCD numbers listed below. 0001 1000 0101 1000 0010 0001 0011 1000 0100 0011 0101 0101 a) Convert these numbers to their decimal values. b) Conv
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd