Permutations and combinations, Mathematics

Assignment Help:

Consider this. You have four units A, B, C and D. You are asked to select two out of these four units. How do you go about this particular task? Will your methodology remain the same, if you are asked that you should select two units, but they should be according to some predefined criteria? Definitely, it differs. In this part we look at two techniques called Permutations and Combinations, which help us solve problems like these.

Before we start looking at permutations and combinations, let us acquaint ourselves with an important principle. It says: if an operation (first) has been performed in say 'm' ways and a second operation which can be performed in 'n' ways, then both the operations can be performed in m x n ways. The explanation is as follows.

The first operation can be performed in any one of the given m ways. After performing this operation in any one of the m ways, the second operation can be performed in any one of the n ways. Since both the operations are performed in any one of either m or n ways, why is that we get m x n ways? Here we have to understand that the first operation is performed in only one of the m ways, but with this one way we can associate n ways of doing the second operation. In other words, we have 1 x n = n ways of performing both the operations, taking into consideration not more than one way of performing the first operation. And therefore corresponding to m ways of performing the first operation we have m x n ways of performing both the operations.

Remember that this concept can be applied even if we have more than two operations. The following example should make this concept clear.

Example 

A person from his office can go to his residence via one of the 3 routes. In how many ways can that person go to his residence via one route and come to office by another route.

That person can go to his residence by one of the three routes. That is, he has 3 ways. Now he can come to office via one of the remaining two routes since he should not take the same route. That is, he can do so in two ways. Therefore, the number of ways that person can go to his residence and come back to his office by  3 x 2 = 6 ways.

Now we look at Permutations and its related concepts. Permutations are defined as each of the arrangements that can be made by taking some or all of the elements given. Here the word arrangement should be understood properly. This will be clear if we consider the given example of taking two out of four units A, B, C and D. The permutations of taking two units out of four can be done in the following ways.  

                   AB, AC, AD, BC, BD, CD

                   BA, CA, DA, CB, DB, DC

Here we are looking at arranging two units in a particular order. In other words, the arrangement AB is not the same as the arrangement BA and therefore, it is necessary to list both of them. Thus AB and BA both are different arrangements of two units A and B.


Related Discussions:- Permutations and combinations

QM II, A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. T...

A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. THIS MONTH, THEY HAD 178 BAGS OF SALINE IN STOCK AND ORDERED 1,277 BAGS. DEMAND FOR SALINE IS NORMALLY DISTRIBUTE

Geometria, un prisma retto ha per base un rombo avente una diagonale lunga ...

un prisma retto ha per base un rombo avente una diagonale lunga 24cm. sapendo che la superficie laterale e quella totale misurano rispettivamente 2800cm e3568cm ,calcola la misura

.., Ask quesLa proporción de empleados de una empresa que usan su auto para...

Ask quesLa proporción de empleados de una empresa que usan su auto para ir al trabajo es 5:16. Si hay un total de 800 empleados, diga la cantidad de autos que se espera que haya es

Math, #question.help.

#question.help.

Introducing counting, INTRODUCING COUNTING : From what you studied previou...

INTRODUCING COUNTING : From what you studied previous study, you know what it means to count. You would also agree that rote learning of number names does not always mean that the

HELP, HOW MANY TENS ONES AND HUNDRED ARE IN A GROUP OF 2

HOW MANY TENS ONES AND HUNDRED ARE IN A GROUP OF 2

Determine the range of given algorithm, The division algorithm says that wh...

The division algorithm says that when a is divided by b, a unique quotient and remainder is obtained. For a fixed integer b where b ≥ 2, consider the function f : Z → Z given by f(

Simple interest, find the simple interest on Rs. 68,000 at 50/3 per annum f...

find the simple interest on Rs. 68,000 at 50/3 per annum for 9 month

Probability, A card is chosen at random from a pack of playing cards.what i...

A card is chosen at random from a pack of playing cards.what is d probability that it is either a heart or the queen of spades

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd