Pattern recognition, Advanced Statistics

Assignment Help:

Pattern recognition is a term for a technology that recognizes and analyses patterns automatically by machine and which has been used successfully in many areas of application including optical character recognition. Speech recognition, remote sensing and medical imaging processing. Because 'recognition' is almost synonymous with 'classification' in this field, pattern recognition includes statistical classification techniques such as discriminant analysis (here known as supervised pattern recognition or supervised learning) and cluster analysis (known as unsupervised pattern recognition or unsupervised learning). Pattern recognition is closely related to artificial intelligence, artificial neural networks and machine learning and is one of the main techniques used in data mining. Perhaps the distinguishing feature of pattern recognition is that no direct analogy is made in its methodology to underlying biological processes.  


Related Discussions:- Pattern recognition

Explanatory analysis, This term is sometimes used for the analysis of data ...

This term is sometimes used for the analysis of data from the clinical trial in which treatments A and B are to be compared under the suppositions that the patients remain on their

Multimodal distribution, Multimodal distribution is the probability distri...

Multimodal distribution is the probability distribution or frequency distribution with number of modes. Multimodality is frequently taken as an indication which the observed di

Generate a scatter plot, Suppose we estimate the following model: Passen...

Suppose we estimate the following model: Passengersi = 1 + 2Populationi + ui a) Generate a scatter plot with passengers on the vertical axis and population on the horizonta

Obuchowski and rockette method, Obuchowski and Rockette method  is an alter...

Obuchowski and Rockette method  is an alternative to the Dorfman-Berbaum-Metz technique for analyzing multiple reader receiver operating curve data. Instead of the modelling the ja

Hazard plotting, Hazard plotting  is based on the hazard function of a dist...

Hazard plotting  is based on the hazard function of a distribution, this procedure gives estimates of distribution parameters, the proportion of units failing by the given time per

Determine the maximum amount of the commodity, A manufacturing company has ...

A manufacturing company has two factories F 1 and F 2 producing a certain commodity that is required at three retail outlets M 1 , M 2 and M 3 . Once produced, the commodity is

Cure models, Models for the analysis of the survival times, or the time to ...

Models for the analysis of the survival times, or the time to event, data in which it is expected that a fraction of the subjects will not experience the event of interest. In a cl

General location model, The model for data containing continuous and catego...

The model for data containing continuous and categorical variables both.The categorical data are summarized by the contingency table and their marginal distribution, 182by the mult

Gaussian markov random field, It is the multivariate normal random vector w...

It is the multivariate normal random vector which satisfies certain conditional independence suppositions. This can be viewed as a model framework which contains a wide range of st

Glejser test, Glejser test is the test for the heteroscedasticity in the e...

Glejser test is the test for the heteroscedasticity in the error terms of the regression analysis which involves regressing the absolute values of the regression residuals for the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd