Partial fractions - integration techniques, Mathematics

Assignment Help:

Partial Fractions - Integration techniques

In this part we are going to take a look at integrals of rational expressions of polynomials and again let's start this section out with an integral which we can already do so we can contrast it with the integrals that we'll be doing in this segment.

 ∫ (2x-1 / x2 -x - 6) (dx)

∫ (1/u) (du)

By using u = x2 - x - 6 and du = (2x-1) dx

= 1n |x2 - x - 6 | + c

Thus, if the numerator is the derivative of the denominator (or a constant multiple of the derivative of the denominator) doing this type of integral is fairly simple.  Though, frequently the numerator isn't the derivative of the denominator (or a constant multiple).  For instance, consider the following integral.

∫ (3x+11/(x2-x-6)) (dx)

In this type of case the numerator is certainly not the derivative of the denominator nor is it a constant multiple of the derivative of the denominator. Hence, the simple substitution which we used above won't work.  Though, if we notice that the integrand can be broken up as follows,

1546_Partial Fractions - Integration techniques 1.png

3x + 11 /x2-x-6

= 4/x-3 - 1/x+2

Then the integral is in fact quite simple.

556_Partial Fractions - Integration techniques 2.png


Related Discussions:- Partial fractions - integration techniques

Geometry, Can two lines contain a given point

Can two lines contain a given point

Describe the types of triangles, Describe the Types of triangles ? Tria...

Describe the Types of triangles ? Triangles can be classified according to the lengths of the sides or the measures of the angles. 1. Naming triangles by sides An

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Sum of a number of terms in g.p., We know that the terms in G.P. are:...

We know that the terms in G.P. are: a, ar, ar 2 , ar 3 , ar 4 , ................, ar n-1 Let s be the sum of these terms, then s = a + ar + ar 2

Find the volume and surface area of the double cone formed, A right triangl...

A right triangle whose sides are 15 cm and 20 cm is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed. (Ans : 3768cu.cm,1318.8

Differential Equations, Verify Liouville''''s formula for y "-y" - y'''' + ...

Verify Liouville''''s formula for y "-y" - y'''' + y = 0 in (0, 1) ?

Determine the relative global error, Consider the differential equation giv...

Consider the differential equation give by y′ = -10(y - sin t) (a) Derive by hand exact solution that satis?es the initial condition y(0) = 1. (b) Numerically obtain the s

Describe segments, Describe Segments, Rays, Angles, and Triangles We now...

Describe Segments, Rays, Angles, and Triangles We now define some more basic geometric figures. 1. Segments Definition A segment is the set of two given points and all the

Tutoring , hi, i was wondering how do you provide tutoring for math specifi...

hi, i was wondering how do you provide tutoring for math specifically discrete mathematics for computer science ? I want to get some help in understanding in the meantime about alg

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd