Parks test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

Regression Analysis: lnsqresi versus lntotexp

The regression equation is

lnsqresi = - 4.82 - 0.301 lntotexp

Predictor     Coef  SE Coef      T      P    VIF

Constant   -4.8198   0.6893  -6.99  0.000

lntotexp   -0.3009   0.1523  -1.98  0.048  1.000

S = 2.26403   R-Sq = 0.3%   R-Sq(adj) = 0.2%

Analysis of Variance

 

Source            DF        SS      MS     F      P

Regression         1    20.015  20.015  3.90  0.048

Residual Error  1500  7688.739   5.126

  Lack of Fit     28   160.408   5.729  1.12  0.304

  Pure Error    1472  7528.331   5.114

Total           1501  7708.754

 

Since β1 ≠ 0 and is -0.301, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqresi versus lnage

The regression equation is

lnsqresi = - 7.75 + 0.442 lnage

Predictor     Coef  SE Coef      T      P    VIF

Constant   -7.7468   0.9747  -7.95  0.000

lnage       0.4419   0.2739   1.61  0.107  1.000

 

S = 2.26501   R-Sq = 0.2%   R-Sq(adj) = 0.1%

 

Analysis of Variance

 

Source               DF         SS        MS          F      P

Regression         1      13.355    13.355  2.60  0.107

Residual Error  1500  7695.399  5.130

  Lack of Fit        40    131.348   3.284   0.63  0.964

  Pure Error      1460  7564.051  5.181

Total          1501  7708.754

Since β1 ≠ 0 and is 0.442, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.


Related Discussions:- Parks test

Residual calculation, Regression line drawn as y= c+ 1075x ,when x was2, an...

Regression line drawn as y= c+ 1075x ,when x was2, and y was 239,given that y intercept was 11. Calculate the residual ?

Copulas, Invariant transformations to combine marginal probability function...

Invariant transformations to combine marginal probability functions to form multivariate distributions motivated by the need to enlarge the class of multivariate distributions beyo

Collapsing categories, Collapsing categories : A procedure generally applie...

Collapsing categories : A procedure generally applied to contingency tables in which the two or more row or column categories are combined, in number of cases so as to yield the re

Excel, Software which started out as the spreadsheet targeting at manipulat...

Software which started out as the spreadsheet targeting at manipulating the tables of number for financial analysis, which has now developed into a more flexible package for workin

Quasi-experiment, Quasi-experiment is a term taken in use for studies whic...

Quasi-experiment is a term taken in use for studies which resemble experiments but are weak on some of the characteristics, particularly that allocation of the subjects to groups

Sampling issue, Dear Experts, Please note that I''m doing a PhD in Busines...

Dear Experts, Please note that I''m doing a PhD in Business management under the title: Technology transfer and competitive advantage in Qatar oil and gas companies. It is a quant

Multimodal distribution, what is pdf,mean & variance for multimodal distrib...

what is pdf,mean & variance for multimodal distribution?

Residual plots, Residual plots are the plots of some type of residual whi...

Residual plots are the plots of some type of residual which might be helpful in assessing the assumption made by the fitted model. In regression analysis there are various method

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd