Parks test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

Regression Analysis: lnsqresi versus lntotexp

The regression equation is

lnsqresi = - 4.82 - 0.301 lntotexp

Predictor     Coef  SE Coef      T      P    VIF

Constant   -4.8198   0.6893  -6.99  0.000

lntotexp   -0.3009   0.1523  -1.98  0.048  1.000

S = 2.26403   R-Sq = 0.3%   R-Sq(adj) = 0.2%

Analysis of Variance

 

Source            DF        SS      MS     F      P

Regression         1    20.015  20.015  3.90  0.048

Residual Error  1500  7688.739   5.126

  Lack of Fit     28   160.408   5.729  1.12  0.304

  Pure Error    1472  7528.331   5.114

Total           1501  7708.754

 

Since β1 ≠ 0 and is -0.301, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqresi versus lnage

The regression equation is

lnsqresi = - 7.75 + 0.442 lnage

Predictor     Coef  SE Coef      T      P    VIF

Constant   -7.7468   0.9747  -7.95  0.000

lnage       0.4419   0.2739   1.61  0.107  1.000

 

S = 2.26501   R-Sq = 0.2%   R-Sq(adj) = 0.1%

 

Analysis of Variance

 

Source               DF         SS        MS          F      P

Regression         1      13.355    13.355  2.60  0.107

Residual Error  1500  7695.399  5.130

  Lack of Fit        40    131.348   3.284   0.63  0.964

  Pure Error      1460  7564.051  5.181

Total          1501  7708.754

Since β1 ≠ 0 and is 0.442, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.


Related Discussions:- Parks test

Implementation of huffman coding, Input to the compress is a text le with a...

Input to the compress is a text le with arbitrary size, but for this assignment we will assume that the data structure of the file fits in the main memory of a computer. Output of

Barnard, Barnard, George Alfred (1915^2002) : Born in Walthamstow in the ea...

Barnard, George Alfred (1915^2002) : Born in Walthamstow in the east of London, Barnard achieved a scholarship to St. John's College, Cambridge, from where he graduated in the math

Correlated failure times, Data which occur when failure period is recorded ...

Data which occur when failure period is recorded which are dependent. Such type of data can arise in number contexts, for instance, in epidemiological cohort studies in which th

General household survey, It is the survey which is carried out in Great Br...

It is the survey which is carried out in Great Britain on a continuous basis since 1971. About 100 000 households are included in this sample every year. The main goal of the surve

Times series plots, The time series for RESI1, HI1 and COOK1 have appeared ...

The time series for RESI1, HI1 and COOK1 have appeared again with different outlier values even though the 17 outliers found early were removed.

Orthogonal, Orthogonal is a term which occurs in several regions of the st...

Orthogonal is a term which occurs in several regions of the statistics with different meanings in each case. Most commonly the encountered in the relation to two variables or t

Method of moments, Method of moments   is the procedure for estimating the...

Method of moments   is the procedure for estimating the parameters in a model by equating sample moments to the population values. A famous early instance of the use of the proced

Categorical variable, Categorical variable : A variable which provides the ...

Categorical variable : A variable which provides the appropriate label of observation after the allocation to one of the several possible categories, for instance, the respiratory

Explain prevalence, Prevalence : The measure of the number of people in a p...

Prevalence : The measure of the number of people in a population who have a certain disease at a given point in time. It c an be measured by two methods, as point prevalence and p

Linearity - reasons for screening data, Linearity - Reasons for Screening D...

Linearity - Reasons for Screening Data Many of the technics of standard statistical analysis are based on the assumption that the relationship, if any, between variables is li

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd