Parks test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

Regression Analysis: lnsqresi versus lntotexp

The regression equation is

lnsqresi = - 4.82 - 0.301 lntotexp

Predictor     Coef  SE Coef      T      P    VIF

Constant   -4.8198   0.6893  -6.99  0.000

lntotexp   -0.3009   0.1523  -1.98  0.048  1.000

S = 2.26403   R-Sq = 0.3%   R-Sq(adj) = 0.2%

Analysis of Variance

 

Source            DF        SS      MS     F      P

Regression         1    20.015  20.015  3.90  0.048

Residual Error  1500  7688.739   5.126

  Lack of Fit     28   160.408   5.729  1.12  0.304

  Pure Error    1472  7528.331   5.114

Total           1501  7708.754

 

Since β1 ≠ 0 and is -0.301, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqresi versus lnage

The regression equation is

lnsqresi = - 7.75 + 0.442 lnage

Predictor     Coef  SE Coef      T      P    VIF

Constant   -7.7468   0.9747  -7.95  0.000

lnage       0.4419   0.2739   1.61  0.107  1.000

 

S = 2.26501   R-Sq = 0.2%   R-Sq(adj) = 0.1%

 

Analysis of Variance

 

Source               DF         SS        MS          F      P

Regression         1      13.355    13.355  2.60  0.107

Residual Error  1500  7695.399  5.130

  Lack of Fit        40    131.348   3.284   0.63  0.964

  Pure Error      1460  7564.051  5.181

Total          1501  7708.754

Since β1 ≠ 0 and is 0.442, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.


Related Discussions:- Parks test

Logistic regression - computing log odds without probabiliti, Please help w...

Please help with following problem: : Let’s consider the logistic regression model, which we will refer to as Model 1, given by log(pi / [1-pi]) = 0.25 + 0.32*X1 + 0.70*X2 + 0.

Explanatory variables, The variables appearing on the right-hand side of eq...

The variables appearing on the right-hand side of equations defining, for instance, multiple regressions or the logistic regression, and which seek to predict or 'explain' response

General household survey, It is the survey which is carried out in Great Br...

It is the survey which is carried out in Great Britain on a continuous basis since 1971. About 100 000 households are included in this sample every year. The main goal of the surve

Ecme algorithm, The Expectation/Conditional Maximization Either algorithm w...

The Expectation/Conditional Maximization Either algorithm which is the generalization of ECM algorithm attained by replacing some of the CM-steps of ECM which maximize the constrai

Banach''s match-box problem, Banach's match-box problem : The person carrie...

Banach's match-box problem : The person carries two boxes of matches, one in his left and one in his right pocket. At first they comprise N number of matches each. When the person

Chebyshev''s inequality, Chebyshev's inequality: A statement about the pro...

Chebyshev's inequality: A statement about the proportion of the observations which fall within some number of the standard deviations of the mean for any of the probability distri

Disease clusters, An unusual aggregation of the health events, real or perc...

An unusual aggregation of the health events, real or perceived. The events might be grouped in the particular region or in some short period of time, or they might happen among the

Frequency distribution, The division of a sample of observations into sever...

The division of a sample of observations into several classes, together with the number of observations in each of them.  It acts as a useful summary of the main features of the da

Contour plot, Contour plot : A topographical map drawn from data comprising...

Contour plot : A topographical map drawn from data comprising observations on the three variables. One variable is represented on horizontal axis and the second variable is represe

Data reduction, The method of summarizing the large amounts of data by form...

The method of summarizing the large amounts of data by forming the frequency distributions, scatter diagrams, histograms, etc., and calculating statistics like means variances and

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd