Parks test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

MTB > let c33=loge(c20)

MTB > let c34=loge(c7)

MTB > let c35=loge(c8)

MTB > let c36=loge(c9)

MTB > let c37=loge(c10)

C33 = lnsqres

C34 = lntotexp

C35 = lnincome

C36 = lnage

C37 = lnnk

 

Regression Analysis: lnsqres versus lntotexp

The regression equation is

lnsqres = - 5.41 - 0.155 lntotexp

 

Predictor     Coef  SE Coef      T      P

Constant   -5.4069   0.6430  -8.41  0.000

lntotexp   -0.1550   0.1420  -1.09  0.275

 

S = 2.15075   R-Sq = 0.1%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     5.515  5.515  1.19  0.275

Residual Error  1517  7017.227  4.626

Total                1518  7022.743

Since β1 ≠ 0 and is 0.155, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

 

Regression Analysis: lnsqres versus lnincome

The regression equation is

lnsqres = - 5.77 - 0.070 lnincome

 

Predictor     Coef  SE Coef      T      P

Constant   -5.7687   0.7111  -8.11  0.000

lnincome   -0.0698   0.1465  -0.48  0.634

 

S = 2.15143   R-Sq = 0.0%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     1.050  1.050  0.23  0.634

Residual Error  1517  7021.693  4.629

Total                1518  7022.743

Since β1 ≠ 0 and is 0.070, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnage

The regression equation is

lnsqres = - 7.23 + 0.315 lnage

 

Predictor     Coef  SE Coef      T      P

Constant   -7.2276   0.9125  -7.92  0.000

lnage         0.3155   0.2563   1.23  0.219

 

S = 2.15052   R-Sq = 0.1%   R-Sq(adj) = 0.0%

 

Analysis of Variance

Source                DF        SS     MS     F      P

Regression          1      7.007  7.007  1.52  0.219

Residual Error    1517  7015.736  4.625

Total                  1518  7022.743

Since β1 ≠ 0 and is 0.315, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnnk

The regression equation is

lnsqres = - 5.99 - 0.281 lnnk

Predictor     Coef        SE Coef           T      P

Constant   -5.98771  0.08819  -67.89  0.000

lnnk           -0.2812   0.1631   -1.72  0.085

 

S = 2.14949   R-Sq = 0.2%   R-Sq(adj) = 0.1%

Analysis of Variance

Source            DF        SS          MS            F      P

Regression      1       13.738    13.738  2.97  0.085

Residual Error 1517  7009.004  4.620

Total               1518  7022.743

Since β1 ≠ 0 and is 0.281, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

MTB > # lntotexp is significant and estimate of beta/2 is -0.155/2 or -0.775


Related Discussions:- Parks test

Funnel plot, It is an informal method of assessing the effect of the public...

It is an informal method of assessing the effect of the publication bias, generally in the context of the meta-analysis. The effect measures from each of the reported study are plo

Times series plots, There is high level of fluctuation in a zigzag pattern ...

There is high level of fluctuation in a zigzag pattern in the time series for RESI1 which indicates that there is possibly negative autocorrelation present. Column C11 show

Auto correlation, Auto correlation : The correlation of the internal observ...

Auto correlation : The correlation of the internal observations in the time series, generally expressed as a function of the time lag between the observations. It is also used for

Data smoothing algorithms, The procedures for extracting the pattern in a s...

The procedures for extracting the pattern in a series of observations when this is obscured by the noise. Basically any such technique or method separates the original series into

correlation, i will like to submit my project for you to do on chi-square,...

i will like to submit my project for you to do on chi-square, ANOVA, and correlation and simple regression. how can we do this?

Public network, This is given by common network e.g. Phone Company. The pub...

This is given by common network e.g. Phone Company. The public networks are those networks, which are given by common carriers. It can be a telephone company or an other organizati

Mendelian randomization, Mendelian randomization is the term applied to th...

Mendelian randomization is the term applied to the random assortment of alleles at the time of gamete formation, a process which results in the population distributions of genetic

Obuchowski and rockette method, Obuchowski and Rockette method  is an alter...

Obuchowski and Rockette method  is an alternative to the Dorfman-Berbaum-Metz technique for analyzing multiple reader receiver operating curve data. Instead of the modelling the ja

Reinterviewing, Reinterviewing  is the second interview for a sample of sur...

Reinterviewing  is the second interview for a sample of survey respondents in which questions of the original interview (or the subset of them) are repeated again. The same methods

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd