Parks test, Advanced Statistics

Assignment Help:

The Null Hypothesis - H0: β1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists

The Alternative Hypothesis - H1: β1 ≠ 0 i.e. there is no homoscedasticity error and there is heteroscedasticity

MTB > let c33=loge(c20)

MTB > let c34=loge(c7)

MTB > let c35=loge(c8)

MTB > let c36=loge(c9)

MTB > let c37=loge(c10)

C33 = lnsqres

C34 = lntotexp

C35 = lnincome

C36 = lnage

C37 = lnnk

 

Regression Analysis: lnsqres versus lntotexp

The regression equation is

lnsqres = - 5.41 - 0.155 lntotexp

 

Predictor     Coef  SE Coef      T      P

Constant   -5.4069   0.6430  -8.41  0.000

lntotexp   -0.1550   0.1420  -1.09  0.275

 

S = 2.15075   R-Sq = 0.1%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     5.515  5.515  1.19  0.275

Residual Error  1517  7017.227  4.626

Total                1518  7022.743

Since β1 ≠ 0 and is 0.155, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

 

Regression Analysis: lnsqres versus lnincome

The regression equation is

lnsqres = - 5.77 - 0.070 lnincome

 

Predictor     Coef  SE Coef      T      P

Constant   -5.7687   0.7111  -8.11  0.000

lnincome   -0.0698   0.1465  -0.48  0.634

 

S = 2.15143   R-Sq = 0.0%   R-Sq(adj) = 0.0%

Analysis of Variance

Source               DF        SS     MS     F      P

Regression         1     1.050  1.050  0.23  0.634

Residual Error  1517  7021.693  4.629

Total                1518  7022.743

Since β1 ≠ 0 and is 0.070, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnage

The regression equation is

lnsqres = - 7.23 + 0.315 lnage

 

Predictor     Coef  SE Coef      T      P

Constant   -7.2276   0.9125  -7.92  0.000

lnage         0.3155   0.2563   1.23  0.219

 

S = 2.15052   R-Sq = 0.1%   R-Sq(adj) = 0.0%

 

Analysis of Variance

Source                DF        SS     MS     F      P

Regression          1      7.007  7.007  1.52  0.219

Residual Error    1517  7015.736  4.625

Total                  1518  7022.743

Since β1 ≠ 0 and is 0.315, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

Regression Analysis: lnsqres versus lnnk

The regression equation is

lnsqres = - 5.99 - 0.281 lnnk

Predictor     Coef        SE Coef           T      P

Constant   -5.98771  0.08819  -67.89  0.000

lnnk           -0.2812   0.1631   -1.72  0.085

 

S = 2.14949   R-Sq = 0.2%   R-Sq(adj) = 0.1%

Analysis of Variance

Source            DF        SS          MS            F      P

Regression      1       13.738    13.738  2.97  0.085

Residual Error 1517  7009.004  4.620

Total               1518  7022.743

Since β1 ≠ 0 and is 0.281, H1 would be accepted suggesting that there are no homoscedasticity errors but there is indication that there is heteroscedasticity.

MTB > # lntotexp is significant and estimate of beta/2 is -0.155/2 or -0.775


Related Discussions:- Parks test

Multi co linearity, Multi co linearity is the term used in the regression ...

Multi co linearity is the term used in the regression analysis to indicate situations where the explanatory variables are related by a linear function, making the inference of the

Residual, regression line drawn as Y=C+1075x, when x was 2, and y was 239, ...

regression line drawn as Y=C+1075x, when x was 2, and y was 239, given that y intercept was 11. calculate the residual

Percentage, Looking for the correct answer.Y=50+.079(149)-.261(214)=

Looking for the correct answer.Y=50+.079(149)-.261(214)=

Command-line options, Command-Line options Compression: C++:  ./comp...

Command-Line options Compression: C++:  ./compress  -f  myfile.txt  [-o  myfile.hzip  -s Java:  sh  compress.sh  -f  myfile.txt  [-o  myfile.hzip  -s] Decompression:

Individual differences, Individual differences scaling is a form of multid...

Individual differences scaling is a form of multidimensional scaling applicable to the data comprising of a number of proximity matrices from the different sources that is differe

Explain Geometric distribution, Geometric distribution: The probability di...

Geometric distribution: The probability distribution of the number of trials (N) before the first success in the sequence of Bernoulli trials. Specifically the distribution is can

Data fusion, The act of combining data from heterogeneous sources with the ...

The act of combining data from heterogeneous sources with the intent of extracting information that would not be available for any single source in isolation. An example is the com

Define matching coefficient, Matching coefficient is a similarity coeffici...

Matching coefficient is a similarity coefficient for data consisting of the number of binary variables which is often used in cluster analysis. It can be given as follows    he

Prevented fraction, Prevented fraction is a measure which can be used to a...

Prevented fraction is a measure which can be used to attribute the protection against the disease directly to an intervention. The measure can given by the proportion of disease w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd