Parametric equations and curves - polar coordinates, Mathematics

Assignment Help:

Parametric Equations and Curves

Till to this point we have looked almost completely at functions in the form y = f (x) or x = h (y) and approximately all of the formulas that we've developed needs that functions be in one of these two forms.  The complexity is that not all curves or equations that we'd like to come across at fall easily into this form.

Take, for instance, a circle. It is very easy to write down the equation of a circle centered at the origin with radius r.

x2 + y2 = r2

Though, we will never be capable to write the equation of a circle down as a single equation in either of the forms as illustrated above. Make sure that we can solve for x or y as the following two formulas show

y = + √ (r2 - x2)

x = + √ (r2 - y2)

But actually there are two functions in each of these. Each formula illustrates a portion of the circle.

y = √ (r2 - x2)  (top)

x = √ (r2 - y2) (right side)

y = - √ (r2 - x2) (bottom)

x = - √ (r2 - y2) (left side)

Unfortunately we generally are working on the whole circle, or just can't say that we're going to be working just only on one portion of it.  Although, if we can narrow things down to just only one of these portions the function is still frequently fairly unpleasant to work with.

There are as well a great several curves out there that we can't even write down as a single equation in terms of just only x and y.  Thus, to deal along with some of these problems we introduce parametric equations.

In place of defining y in terms of x (y= f (x)) or x in terms of y (x = h (y)) we describe both x and y in terms of a third variable known as a parameter as follows,

 x = f (t)

y = g (t)

This third variable is generally represented by t (as we did here) but doesn't have to be of course. Occasionally we will restrict the values of t that we'll make use of and at other times we won't. This will frequently be dependent on the problem and just what we are attempting to do.

Every value of t represents a point (x, y) = (f (t) , g (t)) that we can plot. The collection of points which we get by letting t be all possible values is the graph of the parametric equations and is termed as the parametric curve.

Sketching a parametric curve is not all time an easy thing to do.  Let us take a look at an instance to see one way of sketching a parametric curve. This instance will also demonstrate why this method is generally not the best.


Related Discussions:- Parametric equations and curves - polar coordinates

Cylinder - three dimensional spaces, Cylinder The below equation is th...

Cylinder The below equation is the common equation of a cylinder. x 2 /a 2 + y 2 /b 2 = 1 This is known as a cylinder whose cross section is an ellipse.  If a = b we

What is the maximum number calories which consume from fats, Josephine is o...

Josephine is on an 1,800 calorie per day diet. She tries to remain her intake of fat to no more than 30% of her overall calories. Based on an 1,800 calorie a day diet, what is the

Arc length with parametric equations, Arc Length with Parametric Equations ...

Arc Length with Parametric Equations In the earlier sections we have looked at a couple of Calculus I topics in terms of parametric equations.  We now require to look at a para

Quadratic Equation, Short Cuts for solving quadratic equations

Short Cuts for solving quadratic equations

Definition and theorem of derivation, Definition : A function f ( x ) is c...

Definition : A function f ( x ) is called differentiable at x = a if f ′ ( x ) exists & f ( x ) is called differentiable onto an interval if the derivative present for each of the

#Regular Expression, Find the Regular Grammar for the following Regular Exp...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Julie had $500 how much money did julie spend, Julie had $500. She spent 20...

Julie had $500. She spent 20% of it on clothes and then 25% of the remaining money on CDs. How much money did Julie spend? Find out 20% of $500 by multiplying $500 by the decim

Levels of significance - rejection and acceptance regions, Levels of signif...

Levels of significance A level of significance is a probability value which is utilized when conducting tests of hypothesis. A level of significance is mostly the probability

Describe multiplication and division equations, Describe Multiplication and...

Describe Multiplication and Division Equations? Multiplication Equations :  To solve multiplication equations, divide both sides of the equation by the number being multiplie

Activities to develop ability to classify, Let us now look at some activiti...

Let us now look at some activities that can be organised with preschoolers to develop their ability to classify. 1. You could start by giving children different materials to pla

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd