Outliers - reasons for screening data, Advanced Statistics

Assignment Help:

Outliers - Reasons for Screening Data

Outliers are due to data entry errors, subject is not a member of the population that the sample is trying to represent, or the subject is really different. Statistical tests are quite sensitive to outliers so this problem should be addressed.

Univariate outliers are easy to detect (z-scores, box plots, histograms, etc.) standard scores larger than +/-3 are outliers (consider 4 is n>100 or 2.5 if n<10)

Multivariate outliers are difficult to detect. Mahalanobis distance is one powerful technique to use in this case (discussed later). This is evaluated as a chi-square statistic with degrees of freedom equal to number of variables in the analysis. A chi-sqaure statistic value that is significant beyond p<0.001 level determines outliers.

In most cases, it is ok to drop the value from the sample. One can also take steps to reduce the relative influence of outliers if the researcher decides to include the values in the analysis.


Related Discussions:- Outliers - reasons for screening data

Tree, Tree is the term from the branch of the mathematics which known as t...

Tree is the term from the branch of the mathematics which known as the graph theory, used to describe any set of the straight-line segments joining the pairs of points in some pro

Conditional logistic regression, Conditional logistic regression : The form...

Conditional logistic regression : The form of logistic regression designed to work with the clustered data, such as data including matched pairs of the subjects, in which subject-s

Probability distribution of the net present value, Suppose that $4 million ...

Suppose that $4 million is available for investment in three projects.  The probability distribution of the net present value earned from each project depends on how much is invest

Omitted covariates, Omitted covariates is a term generally found in the co...

Omitted covariates is a term generally found in the connection with regression modelling, where the model has been incompletely specified by not including significant covariates.

Direct edacyclic graph, Formal graphical representation of the "causal diag...

Formal graphical representation of the "causal diagrams" or the "path diagrams" where the  relationships are directed but acyclic (that is no feedback relations allowed). Plays an

Explain kendall''s tau statistics, Kendall's tau statistics : The measures ...

Kendall's tau statistics : The measures of the correlation between the two sets of rankings. Kendall's tau itself (τ) is the rank correlation coefficient based on number of inversi

Empirical bayes method, The procedure in which the prior distribution is re...

The procedure in which the prior distribution is required in the application of Bayesian inference, it is determined from empirical evidence, namely same data for which the posteri

Buffon''s needle problem, Buffon's needle problem : A problem proposed and ...

Buffon's needle problem : A problem proposed and solved by the scientist Comte de Buffon in 1777 which includes determining the probability, p, which a needle of length l will inte

Explanatory variables, The variables appearing on the right-hand side of eq...

The variables appearing on the right-hand side of equations defining, for instance, multiple regressions or the logistic regression, and which seek to predict or 'explain' response

Chance events, Chance events : According to the Cicero these are events whi...

Chance events : According to the Cicero these are events which occurred or will occur in ways which are the uncertain-events which may happen, may not happen, or may happen in some

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd