Outliers - reasons for screening data, Advanced Statistics

Assignment Help:

Outliers - Reasons for Screening Data

Outliers are due to data entry errors, subject is not a member of the population that the sample is trying to represent, or the subject is really different. Statistical tests are quite sensitive to outliers so this problem should be addressed.

Univariate outliers are easy to detect (z-scores, box plots, histograms, etc.) standard scores larger than +/-3 are outliers (consider 4 is n>100 or 2.5 if n<10)

Multivariate outliers are difficult to detect. Mahalanobis distance is one powerful technique to use in this case (discussed later). This is evaluated as a chi-square statistic with degrees of freedom equal to number of variables in the analysis. A chi-sqaure statistic value that is significant beyond p<0.001 level determines outliers.

In most cases, it is ok to drop the value from the sample. One can also take steps to reduce the relative influence of outliers if the researcher decides to include the values in the analysis.


Related Discussions:- Outliers - reasons for screening data

Observation-driven model, Observation-driven model  is a term generally a...

Observation-driven model  is a term generally applied to models for the longitudinal data or time series which introduce within the unit correlation by specifying the conditional

Balanced incomplete block design, Balanced incomplete block design : A desi...

Balanced incomplete block design : A design in which all the treatments are not used in all blocks. Such designs have the below stated properties: * each block comprises the

Parks test, The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedastici...

The Null Hypothesis - H0: β 1 = 0 i.e. there is homoscedasticity errors and no heteroscedasticity exists The Alternative Hypothesis - H1: β 1 ≠ 0 i.e. there is no homoscedasti

Expected frequencies, A term commonly encountered in the analysis of the co...

A term commonly encountered in the analysis of the contingency tables. Such type of frequencies are the estimates of the values to be expected under hypothesis of interest. In a tw

Dendro gram, A term commonly encountered in the application of the agglomer...

A term commonly encountered in the application of the agglomerative hierarchical clustering techniques, where it refers to the 'tree-like' diagram illustrating the series of steps

Inferetial statistics, wat iz z difference b/n logistic regression and mul...

wat iz z difference b/n logistic regression and multiple regression analysis /

Locally weighted regression, Locally weighted regression  is the method of ...

Locally weighted regression  is the method of regression analysis in which the polynomials of degree one (linear) or two (quadratic) are used to approximate regression function in

Z-tests, Hello! I am currently in graduate school earning a masters in ment...

Hello! I am currently in graduate school earning a masters in mental health counseling. I am in a stats course at current and we are reviewing z-scores. I am a little lost because

Prevented fraction, Prevented fraction is a measure which can be used to a...

Prevented fraction is a measure which can be used to attribute the protection against the disease directly to an intervention. The measure can given by the proportion of disease w

Poisson regression, Poisson regression In case of Poisson regression w...

Poisson regression In case of Poisson regression we use ηi = g(µi) = log(µi) and a variance V ar(Yi) = φµi. The case φ = 1 corresponds to standard Poisson model. Poisson regre

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd