Other ways to aid learning maths, Mathematics

Assignment Help:

OTHER WAYS TO AID LEARNING :  Here we shall pay particular attention to the need for repetition, learning from other children, and utilising errors for learning.

 


Related Discussions:- Other ways to aid learning maths

Example of one-to-one correspondence, An educator placed 10 pebbles in a ro...

An educator placed 10 pebbles in a row and asked four-year-old Jaswant to count how many there were. She asked him to touch the pebbles .while counting them. Jaswant counted the pe

Example of integration strategy - integration techniques, Evaluate the subs...

Evaluate the subsequent integral. ∫ (tan x/sec 4 x / sec 4 x)  dx Solution This kind of integral approximately falls into the form given in 3c.  It is a quotient of ta

Combined mean and standard deviation, Combined Mean And Standard Deviation ...

Combined Mean And Standard Deviation Occasionally we may need to combine 2 or more samples say A and B. Therefore it is essential to identify the new mean and the new standard

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Demonstrates th...

Demonstrates that f ( x ) = 4 x 5 + x 3 + 7 x - 2 has accurately one real root. Solution From basic Algebra principles we know that since f (x) is a 5 th degree polynomi

Mensuration, if area of a rectangle is 27 sqmtr and it perimeter is 24 m fi...

if area of a rectangle is 27 sqmtr and it perimeter is 24 m find the length and breath#

Pharmacy technician, Tetracycline 500 mg capsules Sig: 1 cap po bid for 14...

Tetracycline 500 mg capsules Sig: 1 cap po bid for 14 days. Refills: 2 What is the dose of this medication:____________________ (0.5 point) How many doses are given per day:______

Poisson mathematical properties, Poisson Mathematical Properties 1. Th...

Poisson Mathematical Properties 1. The expected or mean value = np = λ Whereas; n = Sample Size p = Probability of success 2. The variance = np = ? 3. Standard dev

Applications of series - differential equations, Series Solutions to Differ...

Series Solutions to Differential Equations Here now that we know how to illustrate function as power series we can now talk about at least some applications of series. There ar

Explain why f must be a di?erentiable function, Let f : R 3 → R be de?ned ...

Let f : R 3 → R be de?ned by:                                        f(x, y, z) = xy 2 + x 3 z 4 + y 5 z 6 a) Compute ~ ∇f(x, y, z) , and evaluate ~ ∇f(2, 1, 1) . b) Brie?y

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd