Order sequences and order release, Mechanical Engineering

Assignment Help:

Order Sequences and Order Release

For this system, sequences of orders for particular parts (batch size 1) are produced in the following way: for each machine, here is, for each shift, a prescribed maximal load level ζ is calculated as ζ (machine type, shift number) = ζ0 (machine type) + Δ ζ (shift number) Δ ζ is arbitrary parameter, the load variation.

Because of the processing sequences structure, the average load ζ0 can only be selected freely on three of the four categories of machines. The selected values are as:

For case 1: 98 percent on HV, DOER and 98 percent on ECOC

For case 2: 98 percent on HV, DOER and 70 percent on ECOC

The load amplitude Δ ζ is understood to be either 0, - 30 percent, or + 30 percent. The actual part mix for simulation is produced from a basic random part type sequence along with average element type frequencies of 10 percent for part 1 and 9 percent for other parts. For all shift, there is a load account for all machines. An order for an exact part type is accepted as extended as the load accounts for all needed machines and for this shift it must not exceed the maximum load level ζ for this shift and these machines. Also, this is skipped. If no more element types can be accepted for this shift, the order sequence for this shift is finish. The subsequent order in the basic sequence becomes the initial new order for the subsequent shift. The actual average part frequencies are hence various from the values in the basic sequence.

As load level can be above 100 percent machine capability, there are backlogs. They are carried above to the subsequent shift. Over the initial 5, 10, 15 and so on, consecutive shifts, the average load level variations are put to zero.

The real order sequences are produced from five various basic element type sequences and five fundamental load variation sequences for all of the conditions illustrated below.

In case 1, orders are released along with equivalent spacing over the duration of a shift within every 19 minutes. In case 2, all orders are released at the starting of a shift. This offers rise to a considerably longer queues for the initial half shift, in exacting at the loading station.

Hence, the characteristics of case 1 can be summarized as: evenly distributed high loads on the machines along with temporary overload; at the stations, short to moderate queues. Within case 2, the characteristics can be specified as: part types 1-5 only need machines that are not bottlenecks; only element types 6-11 utilize machines that may be overloaded; the queues are long; the loading station is a dangerous resource.

Additionally to above conversation, the due date distribution is a critical parameter also that affects the presentation of the  scheduling policies. The due dates are produced as multiples of four hour (1/2 shift) intervals from order free. The percentage of orders for every value of this demanded throughput time was found such as under scheduling as per to FIFO a prescribed value of percentage of late jobs of as 30, 50, 70, and 85% was attained. The resulting distributions are shown in Table no.2 (a) and (b).  The  resulting  ratios  of  demanded  to  real  throughput  times  for  the various situations under the FIFO rule have also been specified in aforementioned tables.

The conditions A-D correspond to case 1, the percentage of late jobs raising from 30-85, the conditions E-H correspond to case 2 along with similar levels of late jobs under the FIFO rule.

Table no.2 (a): Due Dates Distribution for Situation A-D

Situation A : Case 1, 30% late jobs under the FIFO scheduling rule

Demanded Throuhput Time       %      of

Parts

240                            10

480                            10

720                            10

960                            35

1200                          35

Average Throughput Time: 900 min

Demanded/achieved flow factor: 1.29

 

Situation  A  :  Case  1,  50%  late  jobs under the FIFO scheduling rule

Demanded Throughput Time     %          of

Parts

240                            10

480                            25

720                            30

960                            25

1200                          10

Average Throughput Time: 720 min

Demanded/achieved flow factor: 1.03

 

Situation A : Case 1, 70% late jobs under the FIFO scheduling rule

Demanded Throuhput Time       %      of

Parts

240                            24

480                            34

720                            32

960                            5

1200                          5

Average Throughput Time: 559 min

Demanded/achieved flow factor: 0.80

 

Situation  A  :  Case  1,  85%  late  jobs under the FIFO scheduling rule

Demanded Throuhput Time       %          of

Parts

240                            60

480                            25

720                            5

960                            5

1200                          5

Average Throughput Time: 408 min

Demanded/achieved flow factor: 0.57

 


Related Discussions:- Order sequences and order release

Deadlock-able non-resolvable net system, See the Petri net represent in fol...

See the Petri net represent in following figures (a) and (b) as represented in the figure for analysis and depiction of qualitative pathological behaviors. Figure: (a): An

Design loads and load combinations, Q. Design Loads and Load Combinations? ...

Q. Design Loads and Load Combinations? The Designer shall determine the following loads and specify them on the Data Sheet. Design loads are defined and classified as follows:

Designing the cast iron housing for a heavy duty machines, Provide the vari...

Provide the various considerations to be taken in designing the cast iron housing for a heavy duty machines?

Closed - open or isolated system, (a) Specify, giving reasons whether the f...

(a) Specify, giving reasons whether the following systems are closed, open or isolated when in operation (i) Kitchen Refrigerator (ii) Ice-cream freezer (iii) Scooter Engi

Locomotive boiler, advantages and disadvantages of locomotive boiler

advantages and disadvantages of locomotive boiler

Power sources-inverter type power sources, INVERTER TYPE POWER SOURCES Fo...

INVERTER TYPE POWER SOURCES For site welding and repair applications, a need was felt for long time to have light weight arc welding power source. Even though, a petrol driven ro

Plant layout optimization, How to do matlab coding for computerized relativ...

How to do matlab coding for computerized relative allocation of facilities technique

Machining time, how to calculate machining time for milling operation

how to calculate machining time for milling operation

Inlet and exhaust valves-basic components of engine , Inlet and Exhaust Val...

Inlet and Exhaust Valves : Valves are commonly mushroom shaped poppet type. They are provided on the cylinder for regulation of the charge coming into the cylinder (inlet valve)

Differences between torque and torsion, Differences between torque and tors...

Differences between torque and torsion: Give differences between torque and torsion. List a few examples of torsion in the engineering practice. Sol.: When structural or

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd